

MTiG International Workshop

Seismic behaviour of tunnels in sand

Emilio Bilotta & Stefania Fabozzi

University of Napoli Federico II (Italy)

General statements

Ground shaking due to wave propagation and permanent ground displacements due to lateral spreading, landslides and fault rupture are affecting underground structures during a strong earthquake.

- these structures include tunnels and pipelines;
- the failure patterns of underground structures are attributed both to transient and permanent seismic ground displacements;
- a common feature of these structures is their high flexibility and small mass, compared to surrounding soil.

General statements

Seismic behaviour of tunnels is very different from above-ground structures.

The response of the embedded structure is dominated by the response of the surrounding soil

Deformation patterns

When travelling seismic waves hit an underground structure, they force it to deform in various modes

Seismic Behaviour of Tunnels

Increments of internal forces in transverse section

Closed-form solutions accounting for ovalisation

(Wang, 1993; Penzien & Wu, 1998; Penzien, 2000)

Seismic Behaviour of Tunnels

Soil-structure interaction

It is regulated by two crucial factors:

- the soil-lining relative flexibility;
- the interface at the contact between the lining and the ground.

during seismic shaking both factors may change due to the

non-linear behaviour of soil

(shear stiffness and strength)

Is an 'equivalent linear approach' enough to predict the increase of structural demand in the lining?

Segmental lining

Mechanised excavation \rightarrow segmental lining

Longitudinal joints

Transverse joints

\rightarrow watertightness issues

Outline

- Non-linear and irreversible behaviour of soil
 - experimental and numerical evidences in plane strain
 - effects of tunnel excavation in 3D conditions
- Influence of the jointed pattern of a segmental lining
 - influence of longitudinal joints on the internal forces
 - fragility of a segmental lining

Experimental benchmark

(*Round Robin on Tunnel Test, cf. Bilotta et al., 2014)

deep tunnel (T3/T4)

Centrifuge tests (→ RRTT*)

centrifuge spin N = 80

Tube thickness: 0.5 mm

shallow tunnel (T1/T2)

Numerical modelling

Plane strain models

3D models

Plaxis 3D (Brinkgreve et al. 2013).

Initial static conditions:

- same initial stress as in centrifuge or
- modelling a typical excavation process.

Input signals:

- same input signals as in centrifuge;
- natural signals.

Segmental lining

Numerical modelling

Non-linear and irreversible behaviour of soil

- experimental and numerical evidences in plane strain
- effects of tunnel excavation in 3D conditions

Influence of the jointed pattern of a segmental lining

- influence of longitudinal joints on the internal forces
- fragility of a segmental lining

→ the amplification of ground layer is relatively well matched

Stress-strain cycle and associated damping and shear stiffness

- → shear stiffness is properly modelled overall
- → hysteretic damping is underestimated (cf. Brinkgreve et al., 2007)

Surface settlement

→ permanent volumetric changes (sand densification) are observed

Influence of sand densification on internal forces in the lining

w(t)/w_{perm} represents the evolution of densification of the sand layer

→ permanent changes of internal forces are associated to densification

Input signal

South Iceland (2000), M_w =6.6 from ESD

Scaled to a_{max} =0.35g; f_p =4.2 Hz

Numerical evidences in plane strain

Numerical evidences in plane strain

Time histories of changes of internal forces

- Permanent changes of internal forces are locked into the tunnel lining
- They are associated to plastic volumetric deformation of soil
- Typical simplified calculations (i.e. Wang, 1993; Penzien & Wu, 1998) are unable to predict permanent changes

- Non-linear and irreversible behaviour of soil
 - experimental and numerical evidences in plane strain
 - effects of tunnel excavation in 3D conditions
- Influence of the jointed pattern of a segmental lining
 - influence of longitudinal joints on the internal forces
 - fragility of a segmental lining

Modelling tunnel excavation in 3D conditions

Process of construction of a EPB Tunnel Boring Machine

Stress-paths around the tunnel

Before the seismic excitation

p' (kN/m²)

A smaller amount of deviatoric stress is loading the lining ring

Initial static conditions

Distribution of internal forces

tunnel in place

modelling excavation

- Static condition without excavation
- Static condition with excavation

• Dynamic residual with excavation

- The state of stress around the tunnel lining changes during excavation
- Due to the reduction of deviatoric stress around the lining ring, the static internal forces are less severe
- The changes of internal forces during and after shaking depend on the strain level around the tunnel at the end of the excavation, which affect the relative stiffness.

Outline

Non-linear and irreversible behaviour of soil

- experimental and numerical evidences in plane strain
- effects of tunnel excavation in 3D conditions
- Influence of the jointed pattern of a segmental lining

• influence of longitudinal joints on the internal forces

• fragility of a segmental lining

Influence of longitudinal joints on the internal forces

Effects of segmental lining

Effects of segmental lining

distribution of internal forces (residual)

• Due to the larger flexibility an compressibility of the assembled ring of lining, the static internal forces are less severe

BUT

• Is the safety level of the structural section (M,N) the only issue of concern?

Outline

Non-linear and irreversible behaviour of soil

- experimental and numerical evidences in plane strain
- effects of tunnel excavation in 3D conditions
- Influence of the jointed pattern of a segmental lining
 - influence of longitudinal joints on the internal forces
 - fragility of a segmental lining

Fragility of a segmental lining

Relative rotation of the joint (2D)

Time history of rotation at different joints

Seismic behaviour of tunnels in sand

- The behaviour of tunnel linings under seismic loading is not only an issue of structural mechanics
- The non-linear and irreversible behaviour of soil plays an important role in the interaction problem
- A suitable constitutive model for soil is needed to capture the effect of soil-lining interaction at different stages of the tunnel life (construction and pre-earthquake, during seismic excitation, and post-earthquake), even in rather simple ground conditions

Current trends of research

- 3D layouts of segmental lining
- Seismic wave propagation in different planes
- Ground failure (i.e. liquefaction, fault conditions, slope instability...)

References

Benz T., Vermeer P.A., and Schwab R. (2009) A small-strain overlay model. Int J Num Anal Meth Geomech, 33(1): 25 – 44

Bilotta E., Lanzano G., Madabhushi S.P.G., Silvestri F. (2014). A round robin on tunnels under seismic actions. Acta Geotechnica. 9(4): 563-579 Brinkgreve RBJ, Kappert MH, Bonnier PG (2007) Hysteretic damping in a small-strain stiffness model. In: Numerical Models in Geomechanics— NUMOG X, p. 737–742

Brinkgreve RBJ, Swolfs WM, Engine E (2011) PLAXIS 2D user's manual. PLAXIS by the Netherlands

Brinkgreve RBJ, Swolfs WM, Engine E (2013) PLAXIS 3D user's manual. PLAXIS by the Netherlands

Janssen P. (1983) – Tragverhalten von Tunnelausbauten mit Gelenktübbings, Report-No. 83-41 University of Braunschweig, Department of civil engineering, Institute for structural analysis.

Lanzano G., Bilotta E., Russo G., Silvestri F., Madabhushi S.P.G. (2012)Centrifuge modelling of seismic loading on tunnels in sand. Geotech Test J 35(6):1–16

Lanzano G., Visone C., Bilotta E., Santucci de Magistris F. (2016). Experimental Assessment of the Stress–Strain Behaviour of Leighton Buzzard Sand for the Calibration of a Constitutive Model. Geotechnical and Geological Engineering pp 1-22. 10.1007/s10706-016-0019-5

Owen GN, Scholl RE (1981). Earthquake engineering of large underground structures. Report no. FHWA/RD-80/195 Federal Highway Administration and National Science Foundation

Penzien J, Wu CL (1998) Stresses in linings of bored tunnels. Earthq Eng Struct Dyn 27:283–300

Penzien, J. (2000), Seismically induced racking of tunnel linings. Earthquake Engng. Struct. Dyn., 29: 683–691. doi:10.1002/ (SICI)1096-9845(200005)29:5

Pitilakis K, Tsinidis G (2014) Performance and seismic design of underground structures, state-of-art, earthquake geotechnical engineering design. Geotech Geol Earthq Eng 28:279–340

Schanz T., Vermeer P.A., and Bonnier P.G. The hardening soil model: formulation and verification. In Beyond 2000 in computation geotechnics (ed. R. B. J. Brinkgreve): 281–290. Rotterdam: Balkema, 1999

Thienert C., Pulsfort M. (2011), Segment design under consideration of the material used to fill the annular gap, Geomechanics and Tunnelling, pp. 665-680, December 2011.

Wang, J.-N., 1993. Seismic Design of Tunnels: A State-of-the-Art Approach, Monograph, monograph 7. Parsons, Brinckerhoff, Quade and Douglas Inc, New York.