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Seismic	Behaviour	of	Tunnels	and	Underground	Structures	

General	statements	

	

	

Ground	shaking	due	to	wave	propagaAon	and	permanent	ground	
displacements	due	to	lateral	spreading,	landslides	and	fault	rupture	
are	affecAng	underground	structures	during	a	strong	earthquake.		

	

• these	structures	include	tunnels	and	pipelines;			

• the	failure	paIerns	of	underground	structures	are	aIributed	both	
to	transient	and	permanent	seismic	ground	displacements;	

• a	common	feature	of	these	structures	is	their	high	flexibility	and	
small	mass,	compared	to	surrounding	soil.	



(aJer	PiAlakis	&	Tsinidis,	2014)	

The	response	of	the	embedded	structure	is	dominated	by	the	response	
of	the	surrounding	soil	

General	statements	

Seismic	behaviour	of	tunnels	is	very	different	from	above-ground	
structures.		

Seismic	Behaviour	of	Tunnels	and	Underground	Structures	



cause the deformation modes presented in Fig. 11.5e and Fig. 11.5f. Ovaling or
racking effects for circular and rectangular cross-sections respectively.

Contrary to the pipelines, which are generally very flexible, having small
diameters, tunnels and underground structures are quite stiff structures with impor-
tant dimensions. Hence, while for pipelines the soil-structure effects are generally
small if not negligible (Newmark 1968; Mavridis and Pitilakis 1996), for tunnels
and other structures considered herein, soil-structure effects cannot be disregarded.

During earthquake shaking strong interaction effects are mobilized between the
underground structure and the surrounding soil. This interaction is related to two
crucial parameters, namely: (i) the relative flexibility of the structure and the ground

Fig. 11.4 Response of a simple rectangular structure embedded or simply founded on the ground
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Deforma@on	pa6erns	

When	travelling	seismic	waves	hit	an	underground	structure,	they	
force	it	to	deform	in	various	modes	

(Owen	and	Scholl,	1981		
as	modified	by	PiAlakis	&	Tsinidis,	2014)	

Seismic	Behaviour	of	Tunnels	and	Underground	Structures	
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and (ii) the interface characteristics between the structure and the surrounding soil.
In general, both are changing with the seismic excitation as they depend on the soil
shear modulus and strength, which depend on the ground strains attaint and the soil
non-linear behavior.

11.3.1.1 Soil-Structure Relative Flexibility

The soil deformation in the proximity of the structure, which in general is not
elastic, imposes displacement constraint on the structure’s cross-section. Yet, due to
the stiffness difference between the two media, the structure does not follow the
imposed ground deformation. A relatively rigid structure will resist to the seismic
ground deformations, while a flexible structure will follow the ground distortions.
For a very flexible structure the structural distortion may be even higher than the
free field ground deformation. The overall seismic behavior of the structure
depends on the properties of the surrounding soil, which are not constant during
strong excitation, and the inertial properties of the structure itself.

The soil to structure relative flexibility is expressed through the so called
flexibility ratio F (Owen and Scholl 1981; Wang 1993; Penzien 2000 etc.). The
value of the flexibility ratio is closely related to the expected stress level on the
structure:

• F ! 0: the structure is rigid and will not display any type of deformation.
• F < 1: the structure is stiffer than the surrounding soil, thus the structural

deformation level will be smaller than the free-field deformation level.
• F ¼ 1: the structure and the surrounding soil share the same level of stiffness, so

the tunnel will follow the free-field deformation.
• F > 1: the racking deformation of the structure is amplified compared to the

free-field deformations.

To this end, a crucial point for the seismic evaluation of an underground
structure is the proper estimation of the flexibility ratio. For circular tunnels,
assuming elastic behavior, the flexibility ratio can be computed, using the following
analytical formulation (Hoeg 1968; Wang 1993):

F ¼
Es 1" v2l
! "

R3

6ElIl 1þ vsð Þ ð11:1Þ

where, Es is the soil elastic modulus, vs is the soil Poisson ratio, El is the lining
elastic modulus, vl is the lining Poisson ratio, Il is the lining moment of inertia
(per meter) and R is the circular tunnel radius. For rectangular structures the
flexibility ratio is estimated according to Wang (1993) as:

F ¼ Gm &W

S& H
ð11:2Þ

11 Performance and Seismic Design of Underground Structures 287

Increments	of	internal	forces	in	transverse	sec@on		

Closed-form	soluAons	accounAng	for	ovalisaAon	
(Wang,	1993;	Penzien	&	Wu,	1998;	Penzien,	2000)	

ΔN+

+

-

-

+

+

-

-

ΔM

linear	elasAc		

‘full	slip’	vs.	‘no	slip’	



Soil-structure	interac@on	

It	is	regulated	by	two	crucial	factors:	

•  the	soil-lining	relaAve	flexibility;	

•  the	interface	at	the	contact	between	the	lining	and	the	ground.	

during	seismic	shaking	both	factors	may	change	due	to	the		

non-linear	behaviour	of	soil		

(shear	sAffness	and	strength)	

Seismic	Behaviour	of	Tunnels	

Is	an	‘equivalent	linear	approach’	enough	to	predict	the	increase	of	
structural	demand	in	the	lining?	



Segmental	lining	

Mechanised	excavaAon	à	segmental	lining	

Seismic	Behaviour	of	Tunnels	

cause the deformation modes presented in Fig. 11.5e and Fig. 11.5f. Ovaling or
racking effects for circular and rectangular cross-sections respectively.

Contrary to the pipelines, which are generally very flexible, having small
diameters, tunnels and underground structures are quite stiff structures with impor-
tant dimensions. Hence, while for pipelines the soil-structure effects are generally
small if not negligible (Newmark 1968; Mavridis and Pitilakis 1996), for tunnels
and other structures considered herein, soil-structure effects cannot be disregarded.

During earthquake shaking strong interaction effects are mobilized between the
underground structure and the surrounding soil. This interaction is related to two
crucial parameters, namely: (i) the relative flexibility of the structure and the ground
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Longitudinal	joints	 Transverse	joints	

à							waterAghtness	issues	
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Outline	

	

	

• Non-linear	and	irreversible	behaviour	of	soil	

• experimental	and	numerical	evidences	in	plane	strain	

• effects	of	tunnel	excavaAon	in	3D	condiAons	

	

• Influence	of	the	jointed	paIern	of	a	segmental	lining	

• influence	of	longitudinal	joints	on	the	internal	forces	

• fragility	of	a	segmental	lining	
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Centrifuge	tests	(à	RRTT*)		

shallow	tunnel	(T1/T2)		

test	 diameter,	D		
P	[M]	

layer	thickness,	z		
P	[M]	

cover,	C	
P	[M]	

relaAve	density,	Dr	
	(%)	

T1	 6	m	[75	mm]	 23.2	m	[290	mm]	 6	[75]	 75	

T2	 6	m	[75	mm]	 23.2	m	[290	mm]	 6	[75]	 40	

centrifuge	spin	N	=	80	

T3	 6	m	[75	mm]	 23.2	m	[290	mm]	 12	[150]	 75	

T4	 6	m	[75	mm]	 23.2	m	[290	mm]	 12	[150]	 40	

deep	tunnel	(T3/T4)		

input	signals		

Experimental	benchmark	

Tube	thickness:	0.5	mm	
(≈	6	cm	shotcrete	lining)	

	
Soil:		

dry	Leighton	Buzzard	Sand	
(fracAon	E)		

(Lanzano	et	al.,	2012)	

(*Round	Robin	on	Tunnel	Test,	cf.	BiloIa	et	al.,	2014)	



Numerical	modelling	

Plane	strain	models	

40m

Node to node anchors

1g

a(t)

23.2m

6m

(500 mm) 

(75 mm) (80 g) 

Plaxis	2D	(Brinkgreve	et	al.	2011).	

elasto-plasAc	with	strain	hardening	model		
(Schanz	et	al,	1999)		

+		
small	strain	overlay	(Benz	et	al.	2009)	

	
Hardening	Soil	with	small	strain	

(290 mm) 

- 	model	scale	(80g)	
- 	prototype	scale	(1g)		

3D	models	

Plaxis	3D	(Brinkgreve	et	al.	2013).	
IniAal	staAc	condiAons:	
•  same	iniAal	stress	as	in	centrifuge	or	
•  modelling	a	typical	excavaAon	process.	

Input	signals:	
•  same	input	signals	as	in	centrifuge;	
•  natural	signals.	

- 23.2	m	

- 200	m	

Prototype	scale	(1g)		

Segmental	lining	



Numerical	modelling	

Model	calibra@on	

1D	compression	(oedometer)	

Drained	&	Undrained	TXC/TXE	

RC-TS	tests	 Back-analysis	of	centrifuge	tests	

(Lanzano	et	al.,	2016)	
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Experimental	and	numerical	evidences	in	plane	strain	

	

	

	

	

	

	

	

	

	

	

	

	

à		the	amplificaAon	of	ground	layer	is	relaAvely	well	matched	

Time	histories	of	acceleraAon	at	surface	 Response	spectra	

Dynamic	amplifica@on	



Experimental	and	numerical	evidences	in	plane	strain	

	

	

	

	

	

	

	

	

	

	

	
•  à	shear	sAffness	is	properly	modelled	overall	
•  à	hystereAc	damping	is	underesAmated	(cf.	Brinkgreve	et	al.,	2007)		

Stress-strain	cycle	and	associated	damping	and	shear	s@ffness		



Experimental	and	numerical	evidences	in	plane	strain	

Surface	se6lement	

	

	

	

	

	

	

	

	

	

	

	

à permanent	volumetric	changes	(sand	densificaAon)	are	observed	



Experimental	and	numerical	evidences	in	plane	strain	

Influence	of	sand	densifica@on	on	internal	forces	in	the	lining	

	

	

	

	

	

	

	

	

	

	

	

à permanent	changes	of	internal	forces	are	associated	to	densificaAon	

w(t)/wperm		represents	the	evoluAon	of	densificaAon	of	the	sand	layer	
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Numerical	evidences	in	plane	strain	



Evolu@on	of	stress	around	the	tunnel	

	

During	seismic	excitaAon	à	redistribuAon	of	stresses	
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Experimental	and	numerical	evidences	in	plane	strain	

	

•  Permanent	changes	of	internal	forces	are	locked	into	the	tunnel	lining	

	

•  They	are	associated	to	plasAc	volumetric	deformaAon	of	soil	

	

•  Typical	simplified	calculaAons	(i.e.	Wang,	1993;	Penzien	&	Wu,	1998)	
are	unable	to	predict	permanent	changes	

Seismic	behaviour	of	tunnels	in	sand	
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Modelling	tunnel	excava@on	in	3D	condi@ons	

Process	of	construc@on	of	a	EPB	Tunnel	Boring	Machine	
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Stress-paths	around	the	tunnel	
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Influence	of	tunnel	excava@on	

	

•  The	state	of	stress	around	the	tunnel	lining	changes	during	excavaAon		

	

•  Due	to	the	reducAon	of	deviatoric	stress	around	the	lining	ring,	the	
staAc	internal	forces	are	less	severe	

	

•  The	changes	of	internal	forces	during	and	aJer	shaking	depend	on	the	
strain	level	around	the	tunnel	at	the	end	of	the	excavaAon,	which	
affect	the	relaAve	sAffness.	

Seismic	behaviour	of	tunnels	in	sand	
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Influence	of	longitudinal	joints	on	the	internal	forces	
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Kϑ=0.8Myield/ϑ 
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Effects	of	segmental	lining	
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Influence	of	tunnel	excava@on	

	

•  Due	to	the	larger	flexibility	an	compressibility	of	the	
assembled	ring	of	lining,	the	staAc	internal	forces	are	
less	severe	

	

BUT	

	

•  Is	the	safety	level	of	the	structural	secAon	(M,N)	the	
only	issue	of	concern?	

Seismic	behaviour	of	tunnels	in	sand	



Outline	

	

	

• Non-linear	and	irreversible	behaviour	of	soil	

• experimental	and	numerical	evidences	in	plane	strain	

• effects	of	tunnel	excavaAon	in	3D	condiAons	

	

• Influence	of	the	jointed	paIern	of	a	segmental	lining	

• influence	of	longitudinal	joints	on	the	internal	forces	

• fragility	of	a	segmental	lining	



Fragility	of	a	segmental	lining	
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Summary	and	Conclusions	

Seismic	behaviour	of	tunnels	in	sand	

•  The	behaviour	of	tunnel	linings	under	seismic	loading	is	not	only	an	
issue	of	structural	mechanics	

•  The	non-linear	and	irreversible	behaviour	of	soil	plays	an	important	role	
in	the	interacAon	problem	

•  A	suitable	consAtuAve	model	for	soil	is	needed	to	capture	the	effect	of	
soil-lining	interacAon	at	different	stages	of	the	tunnel	life	(construcAon	
and	pre-earthquake,	during	seismic	excitaAon,	and	post-earthquake),	
even	in	rather	simple	ground	condiAons	

Current	trends	of	research	

•  3D	layouts	of	segmental	lining	

•  Seismic	wave	propagaAon	in	different	planes	

•  Ground	failure	(i.e.	liquefacAon,	fault	condiAons,	slope	instability…)	
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