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Double porosity 

Aggregated Bioley silt (Koliji, Vulliet & Laloui 2008)	




Cubzak-Les-Ponts clay (Cosenza & Korosak 2014)	


Secondary compression 



Objectives  

•  Develop a 3D constitutive framework for porous 
materials with evolving internal structure (i.e. pore 
fraction) 

•  Framework must accommodate changes in the 
preconsolidation stresses at each pore scale 

•  Framework must be amenable to finite element 
implementation.	




Effective stress equation (Borja & Koliji, JMPS, 2009)	


Theoretical basis  

•   For each pore scale, take the weighted sum of  the pore air 
   and pore water pressures with the local saturations taken as 
   the weights. 
•   Take the sum of  the mean pore pressures at each pore scale 
   with the pore fractions taken as the weights. 

Overall mean pore pressure:	




Effective stress equation (Borja & Koliji, JMPS, 2009)	


•  For fully saturated media, take the weighted sum of  
the pore water pressures with the pore fractions as 
the weights. 

•  We want a finite deformation formulation to 
accommodate the evolution of  the pore fractions.	


Theoretical basis  

Overall mean pore pressure:	
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Void ratios	


Volume fractions	


Specific volumes	


Theoretical basis  

* Limit scope to fully saturated double-porosity media.	




Internal energy equation	


Theoretical basis  



Internal energy equation	


•  mechanical constitutive law in terms of  effective 
stress 

Theoretical basis  



Internal energy equation	


•  Darcy’s law (or non-Darcy’s law) at each pore scale 

Theoretical basis  



Internal energy equation	


•  mass transfer constitutive law (Gerke & Van 
Genuchten 1993) 

Theoretical basis  



Internal energy equation	


•  compressibility laws determine the evolution of  
the micropore fraction 

Theoretical basis  



Effective stress with B=1	


Solid-water mixture 



Double porosity – fully saturated 

Effective stress with B=1	




Double porosity – fully saturated 

Effective stress with B=1	




•  The effective stress in a double-porosity medium is the 
weighted sum of  the single-porosity effective stresses 
with the pore fractions taken as the weights. 

Double porosity – fully saturated 

Effective stress with B=1	
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Double porosity – fully saturated 



Preconsolidation pressures	


•  The preconsolidation stress for a double-porosity 
medium is the weighted sum of  single-porosity 
preconsolidation stresses with the pore fractions taken 
as the weights. 

Double porosity – fully saturated 



Pancone clay 

Ref: Callisto & Calabresi (1998)	




Pancone clay 

Ref: Callisto & Calabresi (1998)	




Double porosity 

•  Specific volumes 

•  Compressibility laws 



Balance of  linear momentum	


Conservation laws 

Balance of  fluid mass	


•  subject to appropriate boundary and initial conditions	




•  Solid phase constitutive law	


Constitutive laws – 4 sets  

•  Darcy’s law	


•  Fluid mass transfer law	


•  Compressibility-pressure jump law	




Bioley silt (Koliji, Vulliet & Laloui 2008)	
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Double porosity 



Corinth marl (Anagnostopolous et al. 1991)	
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Corinth marl (Anagnostopolous et al. 1991)	


Double porosity 



1D consolidation 



1D consolidation 

Bioley silt simulation – displacement at A-A	




1D consolidation 

Evolution of  preconsolidation pressures at A-A	




1D consolidation 

Evolution of  micropore fraction	




Leaning tower 



Pancone clay 

Ref: Callisto & Calabresi (1998)	
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Leaning tower 

Evolution of  
macropore 
pressures in 
Pancone clay	
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Evolution of  
micropore 
pressures in 
Pancone clay	




Leaning tower 

Evolution of  
micropore 
fraction in 
Pancone clay	




Summary 

•  The (new) double porosity formulation is 
motivated by continuum principles of  
thermodynamics 

•  The (new) finite element formulation can track 
the evolution of  internal structure (micropore 
fraction) 

•  Numerical predictions agree well with 
experimental responses of  aggregated soils	
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