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Introduction

Typical phenomena

I * Fluid or solid?

I * Immersed liquefaction
(simulated 1/2)

I * Chichi earthquake (Japan)

I * Small scale demo

I * Lanslide (Philippines)

I * Debris flow
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Introduction

Context Large movements of saturated geomaterials (e.g. debris
flow) need advanced constitutive models, sometimes including a
so-called solid-fluid transition (and a fluid-solid transition?)

Aim of this talk:

I microscopic origin of bulk viscosity in saturated materials

I question the concept of solid-fluid transition

I suggest an appropriate constitutive framework
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Introduction

Solid-fluid transition

solid+fluid ={
solid (poro-elasto-plastic) material if C
complex one-phase fluid otherwise (e.g. Bingham)
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Introduction

Solid-fluid non-transition

solid+fluid = solid+fluid
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DEM-PFV scheme

1 tetrahedron → 1 pore body
1 triangle → 1 pore throat
Implemented in http://yade-dem.org, and freely available.

Chareyre et al. Transp. Porous Med. (2012), Catalano et al., IJNAMG

(2013)
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Poromechanical coupling

1. Strictly incompressible viscous fluid in Stoke’s regime
viscosity = 1 parameter (implicit ALE scheme)
2. In this talk elastic-frictional contacts = 3 parameters
(explicit DEM)

V̇ =

j=j4∑
j=j1

∫
S f

ij

(us − uf ) . n ds =

j=j4∑
j=j1

Kij (pi − pj )
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Poromechanical coupling

P1:
Poromechanical couplings (e.g. primary consolidation) cannot

be reflected by single-phase rheology. Never.
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= + + +h

Normal motion

Shear motion

Rolling motion

Twist motion
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Normal lubrication force (for instance)

h

F L
n = 3

2
π µ r2

h
ḣ

(no additional parameter)
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See Marzougui et al. Granular Matter (2015).
Note: don’t replicate the conventional lubrication models from the literature, they
are physically inconsistent in most cases.
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Configuration

Numerical configuration

shearFlow

No 

z

x

y

Experimental
configuration of Boyer et al

Boyer et al, Physical Review
Letters (2011)

17 / 33



Preamble: modern trend
Introduction

Yade-DEM and poromechanical coupling
Short range hydrodynamics

Rheology of saturated geomaterials
Discussion

Imposed shear rate
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Shear stress
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The poromechanical coupling has an effect in the transient regime, no significant

effect at steady state.
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shearFlow Pressure
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Comparison with the rheometer measurements

Iv = µw γ̇/P dimensionless shear rate
(please forget “µ(I ) rheology” for a moment)
µ = τ/P apparent friction
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I * For Iv = 0, dry friction.
I * µ = 0.31 and φ = 0.585: the results match those measured

experimentally, no fitting.
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Comparison with the rheometer experiments
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Tx = σC
xy + σLN

xy + σLS
xy
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See Marzougui et al., Granular Matter 2015.

I The contribution of solid contacts to
the bulk shear stress is significant
even in more dilute systems.
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Comparison with the rheometer experiments

P2:
Simple relationships at steady-state:

µ = µ(P, Iv ) and

φ = φ(P, Iv )

independently of particle size (particle shape anyone? ;)
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Debris flow vs. single phase rheology

I P1. φ̇ 6= 0⇒ poromech. coupling ⇒ not a single-phase
rheology

I P2. at steady-state φ = φ(Iv )...

I P3. ... implying poromechanical coupling under changing
conditions

I P4. GOTO P1
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Transient effects vs. change of strain rate
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Debris flow vs. single phase rheology

“Changing conditions”?

I From stable to (I) flowing...
I ... down a slope with ever changing slope angle (II)
I then stopped in a flat area (III) or after impacting a

structure
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Suggestion

I Add “visco-” in front of elasto-plasticity, don’t trade
elasto-plasticity for viscosity

I include γ̇ in critical state soil mechanics based on µ(Iv ),
Φ(Iv ), and effective stress

I find a good technique to solve coupled BVPs with such
equations (DEM, FEMLIP, MPM, SPHxFEM, PFEM,...)

You are done. You can go from the “solid” state to the “fluid”
state, then back to the “solid”. In fact you are always in a
solid+fluid state.
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Further questions (possibly for DEM)

I Particle size distribution

I Non-newtonian pore fluid (clay suspension?)

I Segregation

I Micromechanics (fabric evolution and others)

I ...
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Summary

I Robust and quantitative model for mixtures of spherical
grains and newtonian fluids (yade-dem.org)

I Rate dependent critical state theory is sufficient

I Solid-fluid transition is not necessary

I Solving coupled problems cannot be avoided

THANK YOU FOR ATTENTION
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