

From plasticity to visco-plasticity

Bruno Chareyre, Donia Marzougui, Julien Chauchat 3SR Lab., Univ. Grenoble Alpes

MTiG IV, Assisi, 16-18 May 2016

Introduction

Typical phenomena

- * Fluid or solid?
- * Immersed liquefaction (simulated 1/2)
- * Chichi earthquake (Japan)
- * Small scale demo
- * Lanslide (Philippines)
- * Debris flow

Introduction

Context Large movements of saturated geomaterials (e.g. debris flow) need advanced constitutive models, sometimes including a so-called solid-fluid transition (and a fluid-solid transition?)

Aim of this talk:

- microscopic origin of bulk viscosity in saturated materials
- question the concept of solid-fluid transition
- suggest an appropriate constitutive framework

Introduction

Solid-fluid transition

solid+fluid =solid (poro-elasto-plastic) material if Ccomplex one-phase fluid otherwise (e.g. Bingham)

<ロ> <同> <同> < 回> < 回>

Introduction

Solid-fluid non-transition

solid+fluid = solid+fluid

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

Preamble: modern trend Introduction

Outline

- 1 Preamble: modern trend
- **2** Introduction
- **3** Yade-DEM and poromechanical coupling
- **4** Short range hydrodynamics
- **6** Rheology of saturated geomaterials

6 Discussion

Plan

2 Introduction

3 Yade-DEM and poromechanical coupling

A Short range hydrodynamics

Rheology of saturated geomaterials

Discussion

DEM-PFV scheme

 $\begin{array}{l} 1 \mbox{ tetrahedron} \rightarrow 1 \mbox{ pore body} \\ 1 \mbox{ triangle} \rightarrow 1 \mbox{ pore throat} \\ \mbox{ Implemented in http://yade-dem.org, and freely available.} \end{array}$

Chareyre et al. Transp. Porous Med. (2012), Catalano et al., IJNAMG (2013)

Poromechanical coupling

cell 1 cell 2

Strictly incompressible viscous fluid in Stoke's regime viscosity = 1 parameter (implicit ALE scheme)
In this talk elastic-frictional contacts = 3 parameters (explicit DEM)

$$\dot{V} = \sum_{j=j_{1}}^{j=j_{4}} \int_{S_{ij}^{f}} (u^{s} - u^{f}) \cdot n \, ds = \sum_{j=j_{1}^{i}}^{j=j_{4}} \mathcal{K}_{ij} \left(p_{i} - p_{j}\right)$$

Poromechanical coupling

Consolidation problem:

Time evolution of a saturated medium under external load

Poromechanical coupling

Consolidation problem:

Time evolution of a saturated medium under external load

Poromechanical coupling

P1:

Poromechanical couplings (e.g. primary consolidation) cannot be reflected by single-phase rheology. Never.

イロト イポト イヨト イヨト

Plan

2 Introduction

- ③ Yade-DEM and poromechanical coupling
- **4** Short range hydrodynamics

Rheology of saturated geomaterials

Discussion

Preamble: modern trend Short range hydrodynamics

Normal lubrication force (for instance)

 $F_n^L = \frac{3}{2} \pi \mu \frac{r^2}{h} \dot{h}$ (no additional parameter)

See Marzougui et al. Granular Matter (2015). Note: don't replicate the conventional lubrication models from the literature, they are physically inconsistent in most cases. <ロ> <四> <四> <日> <日> <日</p>

Plan

2 Introduction

- ③ Yade-DEM and poromechanical coupling
- A Short range hydrodynamics

Discussion

Configuration

Numerical configuration

<u>shearFlow</u>

Experimental configuration of Boyer et al

Boyer et al, Physical Review Letters (2011) Control Co

Imposed shear rate

Shear stress

shearFlow

⊜3स

<ロト < 合 > < 言 > < 言 > こ シ < ご > こ 少 < C 20 / 33

Comparison with the rheometer measurements

 $I_v = \mu_w \dot{\gamma}/P$ dimensionless shear rate (please forget " $\mu(I)$ rheology" for a moment) $\mu = \tau/P$ apparent friction

Comparison with the rheometer experiments

$$T_x = \sigma_{xy}^{C} + \sigma_{xy}^{LN} + \sigma_{xy}^{LS}$$

⊜ર્_R

 The contribution of solid contacts to the bulk shear stress is significant even in more dilute systems.

Comparison with the rheometer experiments

P2: Simple relationships at steady-state:

 $\mu = \mu(P, I_v)$ and $\phi = \phi(P, I_v)$

independently of particle size (particle shape anyone?;)

イロト イポト イヨト イヨト

Plan

2 Introduction

- ③ Yade-DEM and poromechanical coupling
- 4 Short range hydrodynamics

\$⇒ઉત્⊀

5 Rheology of saturated geomaterials

6 Discussion

shearFlow

\$34

<ロト < 合 > < 言 > < 言 > こ シ < ご > こ 少 < ご / 33

Debris flow vs. single phase rheology

- \blacktriangleright P1. $\dot{\phi} \neq 0 \Rightarrow$ poromech. coupling \Rightarrow not a single-phase rheology
- P2. at steady-state $\phi = \phi(I_v)...$
- P3. ... implying poromechanical coupling under changing conditions
- P4. GOTO P1

Transient effects vs. change of strain rate

Debris flow vs. single phase rheology

"Changing conditions"?

- From stable to (I) flowing...
- ... down a slope with ever changing slope angle (II)
- then stopped in a flat area (III) or after impacting a structure

- Add "visco-" in front of elasto-plasticity, don't trade elasto-plasticity for viscosity
- include $\dot{\gamma}$ in critical state soil mechanics based on $\mu(I_{\nu})$, $\Phi(I_{\nu})$, and effective stress
- find a good technique to solve coupled BVPs with such equations (DEM, FEMLIP, MPM, SPHxFEM, PFEM,...)

You are done. You can go from the "solid" state to the "fluid" state, then back to the "solid". In fact you are always in a solid+fluid state.

Further questions (possibly for DEM)

- Particle size distribution
- Non-newtonian pore fluid (clay suspension?)
- Segregation
- Micromechanics (fabric evolution and others)

Summary

- Robust and quantitative model for mixtures of spherical grains and newtonian fluids (yade-dem.org)
- Rate dependent critical state theory is sufficient
- Solid-fluid transition is not necessary
- Solving coupled problems cannot be avoided

THANK YOU FOR ATTENTION

References

Boyer, F., Guazzelli, ., & Pouliquen, O. (2011). Unifying suspension and granular rheology. *Physical Review Letters*, 107(18), 188301.

Chareyre, B., Cortis, A., Catalano, E., & Barthlemy, E. (2012). Pore-scale modeling of viscous flow and induced forces in dense sphere packings. *Transport in porous media*, 94(2), 595-615.

Catalano, E., Chareyre, B., & Barthlemy, E. (2014). Porescale modeling of fluidparticles interaction and emerging poromechanical effects. *International Journal for Numerical and Analytical Methods in Geomechanics*, 38(1), 51-71.

Marzougui, D., Chareyre, B., & Chauchat, J. (2015). Microscopic origins of shear stress in dense fluidgrain mixtures. *Granular Matter*, 17(3), 297-309.

Chareyre, B., Marzougui, D., & Chauchat, J. (2015). *Can we reduce debris flow to an equivalent one-phase flow?*. In IOP Conference Series: Earth and Environmental Science (Vol. 26, No. 1, p. 012009). IOP Publishing.