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Wawersik & Fairhurst (1970)

experimental observations

hardening/softening

standard compression tests on geomaterials
(rock, sand, fine-grained soils)
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motivation

Colliat (1986)

experimental observations

softening may lead to both:
(i)  spatial discontinuities (strain localization)
(ii) time discontinuities (critical softening)

Ludovico-Marques et al. (2012)
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Wawersik & Fairhurst (1970)
critical softening (displacement controlled test):

• loss of test controllability
• perfectly brittle behaviour
• sharp drop (jump) of load-carrying ability

response of the material evolves at a different 
time scale (faster) with respect to the applied 
perturbation
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motivation constitutive modelling

classical approach in continuum mechanics:

rate-independent elastoplasticity:
• evolution laws derived from the interpretation of simple laboratory tests
• assumption: stress/strain fields homogeneous within the sample

strain localization and critical softening:
• local instabilities in the constitutive equations
• ill-posedness of the evolution problem
• non-uniqueness in the incremental response

critical softening in a strain controlled process:
• vanishing of the determinant of the elastoplastic compliance matrix
• critical value of the hardening modulus
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motivation constitutive modelling

classical approach in continuum mechanics:

possibility to guarantee well-posedness of the evolution problem even
beyond the onset of critical softening: ‘adaptive’ viscoplastic regularization
(Dal Maso et al. 2009, 2010, 2011)

• Cam-clay plasticity

problems to be tackled…
• why the evolution problem becomes ill-posed
• how to handle critical softening (viscoplastic approximation)
• how to integrate the regularized equations
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Cam-Clay plasticity

It exhibits both hardening and softening, depending on the loading conditions.

The variables and constraints of the model are:

total strain:

additive decomposition of deformation:

displacement:

stress:

internal variable:

stress constraint:

yield surface:

preconsolidation pressure:
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Cam-Clay plasticity

The yield surface is an ellipsoid in the stress space passing through the origin:

where p, q are stress invariants:

the constraint

q

p

z pc

f(,z)=0

1
M

If the yield surface expands leading to a hardening response.
If the yield surface shrinks leading to a softening response.
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Cam-Clay plasticity the evolution laws

Kuhn-Tucker conditions:

consistency condition:

hardening law:

flow rule:

additive decomposition of deformations:

constitutive equation:

where

where is the consistency parameter

where ln v

ln p

1

1



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Cam-Clay plasticity well-posedness

initial condition at yield:

prescribe a total strain increment:

assume plastic loading:

Kuhn-Tucker conditions:

consistency condition:

hardening modulus

critical hardening modulus
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Cam-Clay plasticity well-posedness

The evolution problem is well posed only as long as
(Maier & Hueckel, 1979).

This condition is always assumed in the literature, in order to ensure the 
positiveness of the consistency parameter.

st
re

ss

strain

H –Hc = 0 (Critical Softening)

H –Hc < 0 (Subcritical Softening)

H –Hc > 0 (Hardening/Normal Softening)

plastic modulus (KP) or
modulus of instability

Kuhn-Tucker conditions:

consistency condition:
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viscoplastic regularization

We use a viscoplastic regularization in the Duvaut-Lions format.
Given a viscosity parameter t>0, the evolution equations are:

Hardening law:

Flow rule:

Additive decomposition of deformations:

Constitutive equation:

where

projection onto

Unconstrained problem: the stress state is no longer constrained to lie on the yield 
surface during a plastic process. 
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viscoplastic regularization

(t≠0) standard viscoplasticity

evolution problem always well posed
rate-dependency
continuous solution

(t→0) limit solution

…
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During a generic loading process, by solving the regularized evolution equations in the 
limit as t → 0, the viscous dynamics presents three possible regimes:

Elastic regime

Slow dynamics (H –Hc > 0 or Kp>0)

Loading process entirely inside the yield surface

corresponding rate-independent evolution problem well-posed
viscous limit solution is continuous (tends to solution of rate-independent problem)
both hardening and softening can occur.

Fast dynamics (H –Hc ≤ 0 or Kp≤0)

corresponding rate-independent evolution problem ill-posed
viscous limit solution is discontinuous (jumps)
introduce a dilated time s:=t/t to rescale the equations
study the evolution of (,z) along the jump 

viscoplastic regularization limit solutions
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rescaling the equations (in the limit as t → 0):

viscoplastic regularization limit solutions

slow dynamics:

fast dynamics (jumps):
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Hardening law:

Flow rule:

Constitutive equation:

rescaling the equations (in the limit as t → 0):

viscoplastic regularization limit solutions
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Hardening law:

Flow rule:

Constitutive equation:

rescaling the equations (in the limit as t → 0):

viscoplastic regularization limit solutions

slow dynamics
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Hardening law:

Flow rule:

Constitutive equation:

rescaling the equations (in the limit as t → 0):

viscoplastic regularization limit solutions

0 ≠

fast dynamics

0 ≠

0 ≠
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viscoplastic regularization

In the fast dynamics regime, the rescaled equations are:

The asymptotic values of the solution at s=±∞ give the asymptotic values of the viscosity 
solution before and after the jump, i.e.:

fast dynamics
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viscoplastic regularization

during the jump:
• internal variable strictly decreasing (softening).

at the end of the jump:
• the stress state lies on the yield surface: f(,z)=0
• the plastic modulus is positive: Kp>0
• the viscous solution evolves either in the elastic or in the slow dynamics regime

fast dynamics
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viscoplastic regularization adaptive

(t≠0) standard viscoplasticity

evolution problem always well posed
rate-dependency
continuous solution

(t→0) limit solution

evolution problem always well posed
discontinuous solution

Kp>0 (slow dynamics) rate-independent problem
Kp≤0 (fast dynamics) jumps

adaptive viscous regularization
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numerical integration

We assume that the state of the material (n,zn) is given at time tn.
Let ∆𝜺𝑛+1= 𝜺𝑛+1-𝜺𝑛 be the incremental strain at time tn+1, the problem to be addressed 
is to update the state variables (n+1,zn+1) through the integration of the viscous equations, 
either in slow dynamics or in fast dynamics. 

slow dynamics
standard return mapping algorithm
elastic predictor + plastic corrector
system well-conditioned for all t ≥0 

• t >0 standard viscoplasticity
• t =0 rate-independent limit

inception of jump discontinuities (t =0):
• ∆𝛾𝑛+1= consistency parameter 
• if ∆𝛾𝑛+1< 0 then solution rejected (critical softening) 
• integrate the equation of fast dynamics 

strategy
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numerical integration

We assume that the state of the material (n,zn) is given at time tn.
Let ∆𝜺𝑛+1= 𝜺𝑛+1-𝜺𝑛 be the incremental strain at time tn+1, the problem to be addressed 
is to update the state variables (n+1,zn+1) through the integration of the viscous equations, 
either in slow dynamics or in fast dynamics. 

fast dynamics
internal variable strictly decreasing (softening)
stress state outside the yield locus

idea:
use z as independent variable
shrink the elastic domain until the stress state come back to the yield surface

end of jump discontinuities:
• the stress state lies on the yield surface
• the plastic modulus is positive
• integrate the equation of slow dynamics (t =0)

strategy
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1. single-element tests (undrained triaxial tests)
1.1 accuracy and ‘adaptive’ ws ‘standard’
1.2 preconsolidation pressure

2. BVP (plane strain compression tests/FEAP)
2.1 standard viscoplasticity
2.2 adaptive regularization

numerical examples
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1. single-element tests (undrained triaxial tests)
1.1 accuracy and ‘adaptive’ ws ‘standard’
1.2 preconsolidation pressure

2. BVP (plane strain compression tests/FEAP)
2.1 standard viscoplasticity
2.2 adaptive regularization

numerical examples
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Dal Maso & DeSimone (2009)
simplified MMC model (elastic stiffness/hardening law)
‘adaptive regularization’, t=0

z*0 = 6.54
z*0 = 13.48
z*0 = 22.50
z*0 = 33.71

internal variable:initial condition:

p*0 = 2
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1. single-element tests (undrained triaxial tests)
1.1 accuracy and ‘adaptive’ ws ‘standard’
1.2 preconsolidation pressure

2. BVP (plane strain compression tests/FEAP)
2.1 standard viscoplasticity
2.2 adaptive regularization

numerical examples
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1. single-element tests (undrained triaxial tests)
1.1 accuracy and ‘adaptive’ ws ‘standard’
1.2 preconsolidation pressure

2. BVP (plane strain compression tests/FEAP)
2.1 standard viscoplasticity
2.2 adaptive regularization

numerical examples



Conti, Tamagnini, DeSimone
MTiG IV - Assisi, 2016

standard plane strain compression tests
FE code FEAP

BVP #1
local: standard viscoplasticity (t≠0)
global: quasi-static (N-R algorithm)

BVP #2
local: ‘adaptive’ regularization (t=0)
global: dynamic (Newmark explicit)

numerical examples
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numerical examples BVP #1

local: standard viscoplasticity (t≠0)
global: quasi-static (N-R algorithm)

𝐺 = 5 MPa
 𝜆 = 0.100
 𝜅 = 0.050

𝑀 = 1.3

material parameters:

initial condition:

pc0 = 1200kPa

preconsolidation pressure:

p0 = 50kPa

20 x 40 25 x 50 30 x 60

𝜏 = 0.001𝑠

𝐺 = 2 MPa
 𝜆 = 0.090
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numerical examples BVP #1
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local: standard viscoplasticity (t≠0)
global: quasi-static (N-R algorithm)

𝐺 = 5 MPa
 𝜆 = 0.100
 𝜅 = 0.050

𝑀 = 1.3

material parameters:

initial condition:

pc0 = 1200kPa

preconsolidation pressure:

p0 = 50kPa

𝜏 = 0.001𝑠

𝐺 = 2 MPa
 𝜆 = 0.090
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numerical examples BVP #2

local: ‘adaptive’ regularization (t=0)
global: dynamic (Newmark explicit: b=0, g=0.5)

𝐺 = 4 MPa
 𝜆 = 0.100
 𝜅 = 0.045

𝑀 = 1.3

material parameters:

initial condition:

pc0 = 1200kPa

preconsolidation pressure:

p0 = 50kPa

𝜏 = 0𝑠

𝐺 = 2.5 MPa
 𝜆 = 0.070

25 x 50
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conclusions & perspectives

CONCLUSIONS

viscoul regularization
Cam-clay plasticity
Limit solution (t → 0) – adaptive regularization
∃! solution beyond critical softening

numerical implementation
exploiting properties of viscous limit solution
jump discontinuities
mesh sensitivity (BVP)

PERSPECTIVES

extend the proposed approach to:
plasticity models more suitable for softening
critical softening driven by chemo-mechanical coupling effects

combine the proposed approach with:
non-local approach (localization phenomena)
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