

Outline

- Geophysical methods
 - Scope and potential for geotechnical and geoenvironmental characterization
- Combined use
 - Different levels of integration
- Case histories
 - Levees
 - Landslides
 - Seismic site response

Geophysical parameters

Geophysical methods are indirect surveying techniques based on measurements carried out **on the ground surface or in holes**. They allow the distribution of physical properties of the subsurface to be estimated and correlated with engineering information.

- Density
- Electrical Conductivity (or Resistivity)
- Electrical Permittivity
- Magnetic Suscettibility
- Chargeability
- Seismic velocities (Elastic Moduli)

Geotechnical and geoenvironmental site characterization

In the context of site characterization for engineering purposes, the role of geophysical methods is twofold:

- evaluation of geometrical boundaries to model subsoil conditions (e.g. stratigraphy but also physical inclusions or hydrogeological features);
- evaluation of physical/mechanical parameters of direct use for geotechnical modeling.

Identification of stratigraphic sequence / local litography

Non-seismic methods: e.g. electrical methods to identify clays below sands

Powerful tools to investigate lateral variations at the site (e.g. for assessing the potential for differential settlements)

Geotechnical and geoenvironmental site characterization

In the context of site characterization for engineering purposes, the role of geophysical methods is twofold:

- evaluation of geometrical boundaries to model subsoil conditions (e.g. stratigraphy but also physical inclusions or hydrogeological features);
- evaluation of physical/mechanical parameters of direct use for geotechnical modeling.

Seismic methods

Soil porosity from seismic velocities Leaning Tower of Pisa site

MTiG4 Assisi, Italy 18th May 2016

SEBASTIANO FOTI

Non seismic methods

Quantitative use of geophysical parameters other than seismic velocities is less straightforward and typically require the use of empirical correlations with geotechnical parameters

Example: electrical conductivity of soils

Trasport parameter related to:

- fluid properties (solubility of ionic species, concentration); σ_w : pore fluid conductivity
- mineralogy and specific surface of the solid grains;
- porosity and fabric

Archie	$\sigma_t = \sigma_w \phi^u S_r^{p}$	<i>n</i> : porosity	S: saturation
Bruggeman	$\sigma_t = \sigma_w \phi^{3/2}$	m = 3/2 : theoretical	
Waxman & Smits	$\sigma_t = X (\sigma_w + \sigma_s)$	$\sigma_{\rm s}$: clay surfa	ace conductivity

MTiG4 Assisi, Italy 18th May 2016

Combined use of geophysical methods

Synergies between different techniques can be exploited at different level of integration:

- Level 1: comparison for validation / calibration
- Level 2: data integration and data fusion (combining different information on the same medium)
- Level 3: a priori info (one method help the other)
- Level 4: joint inversion (simultaneous interpretation of different dataset)

Interpacific benchmark: test sites

MTiG4 Assisi, Italy 18th May 2016

SEBASTIANO FOTI

All Sites: Invasive vs Non-Invasive

Level 2: Data integration and data fusion

Pugin et al., 2009

Combined use

- Level 1: comparison for validation
- Level 2: data fusion
- Level 3: a priori info
- Level 4: joint inversions

Most geophysical methods require the solution of inverse problems which are inherently ill-posed and hence subject to solution non-uniqueness. A-priori information and additional data may provide supplementary constraints to improve the reliability of the solution

Level 4: joint inversion

(Piatti et al., 2012b)

EXAMPLE

A single inversion problems is solved considering all the available experimental information: e.g. the best fit parameters for both V_P and V_S models are obtained from seismic refraction and surface wave data

A single misfit parameter include misfit on Rayleigh wave dispersion curve and P-wave travel times

$$L = \left(\frac{1}{N+M+A} \left[\left(\mathbf{d}_{obs} - \mathbf{g}(\mathbf{m}) \right)^T \mathbf{C}_{obs}^{-1} \left(\mathbf{d}_{obs} - \mathbf{g}(\mathbf{m}) \right) \right]$$
$$\mathbf{d}_{obs} = \left[\left(\log(V_{R1}), \log(V_{R2}), \dots, \log(V_{RN'}) \right) \left(\log(t_1), \log(t_2), \dots, \log(t_{N''}) \right) \right]$$
$$\mathbf{g}(\mathbf{m}) = \begin{bmatrix} \mathbf{g}_{SW}(\mathbf{m}) \\ \mathbf{g}_{PR}(\mathbf{m}) \end{bmatrix} \qquad \mathbf{m} = \left[\left(\log(h_1), \log(h_2), \dots, \log(h_n) \right) \left(\log(V_{S1}), \log(V_{S2}), \dots, \log(V_{Sn+1}) \right) \\ \left(\log(V_{P1}), \log(V_{P2}), \dots, \log(V_{Pn+1}) \right) \right]$$

Structural link: the two layered models share the same geometry

MTiG4 Assisi, Italy 18th May 2016

SEBASTIANO FOTI POLITECNICO DI TORINO

Experimental data

MTiG4 Assisi, Italy 18th May 2016

Experimental data

Case History #1

Combination of seismic and electrical methods for the assessment of site conditions for seepage analysis along an embankment

- Combination of several methods for reliable evaluation of cover thickness
- Joint inversion to improve accuracy

Seepage potential

Floods very often start with localized seepage that can degenerate causing inundations 10 extreme events each 100 years

Levees for a total length over 2400 km

SEBASTIANO FOTI

POLITECNICO DI TORINO

Seepage potential

Geology: alluvial deposits: recent sands, gravel, clay TARGET: clayey layer: continuity, thickness

MTiG4 Assisi, Italy 18th May 2016

SEBASTIANO FOTI

POLITECNICO DI TORINO

Geophysical investigation

large extension of the areas Interest in fast geophysical tests from the surface

Local geology: layers of sand and clay. Expected shallow water table

Integrated geophysical survey:

- Seismic acquisition for surface wave
- Seismic acquisition for P-wave refraction
- Vertical Electrical Sounding

Joint inversion algorithm

joint-inversion algorithm for a set of experimental data related to different physical phenomena and in order to obtain an internally consistent multi-parametric layered model

Joint inversion algorithm

MTiG4 Assisi, Italy 18th May 2016

SEBASTIANO FOTI

MTiG4 Assisi, Italy 18th May 2016

SEBASTIANO FOTI

MTiG4 Assisi, Italy 18th May 2016

SEBASTIANO FOTI

POLITECNICO DI TORINO

Case history #3

Investigation of volcanoclastic slopes

- Combination of several in situ geophysical tests to increase the reliability of the results
- Combination of laboratory and in situ testing for the assessment of saturation conditions

Flowslides of 1998 in Campania

MTiG4 Assisi, Italy 18th May 2016

SEBASTIANO FOTI

POLITECNICO DI TORINO

(Cascini et al., 2008)

(Cascini et al., 2008)

Cover soils formed by volcanic ashes from the Vesuvio (few meters thick) over a carbonatic bedrock

Site characterization

Objectives

- Quantification of potential volume of the flow (for the design of mitigation infrastructures): thickness of the soil cover
- Prevision of onset of the flowslide: assessment and monitoring of saturation condition of the soil cover

Critical issues

- Very difficult site logistics with steep and vegetated slopes poses strong limitations in the use of conventional site tests (boreholes and penetration testing)
- Necessity of investigating large areas

Combination of different geophysical approaches

MTiG4 Assisi, Italy 18th May 2016

Laboratory calibration of Archie's law for unsat materials

The two exponents *m* and *p* are found by fitting laboratory data

MTiG4 Assisi, Italy 18th May 2016

SEBASTIANO FOTI

Mapping resistivity into degree of saturation

Porosity assumed a-priori on the basis of independent estimates

MTiG4 Assisi, Italy 18th May 2016

Porosity & Degree of Saturation

• Wave propagation in unsat porous media (Conte et al., 2009)

$$V_{P}^{2} = \frac{2(1-\nu^{sk})}{1-2\nu^{sk}}G + \frac{K^{a}K^{w}\left[m_{2}^{w} - \frac{3(1-2\nu^{sk})S_{r}^{2}}{2(1+\nu^{sk})G}\right] + \phi S_{r}(1-S_{r})\left[K^{w}S_{r} + K^{a}(1-S_{r})\right]}{\phi\left[K^{a}S_{r} + K^{w}(1-S_{r})\left[m_{2}^{w} - \frac{3(1-2\nu^{sk})S_{r}^{2}}{2(1+\nu^{sk})G}\right] + \phi^{2}S_{r}(1-S_{r})}\right]}$$

$$V_{P}^{2} = \frac{(1-\phi)\rho_{s} + S_{r}\phi\rho_{w} + (1-S_{r})\phi\rho_{a}}{(1-\phi)\rho_{s} + S_{r}\phi\rho_{w} + (1-S_{r})\phi\rho_{a}}$$

$$V_s^2 = \frac{G}{(1-\phi)\rho_s + S_r\phi\rho_w + (1-S_r)\phi\rho_a}$$

• Archie's Law (electrical conductivity)

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}_{w} \boldsymbol{\phi}^{p} \boldsymbol{S}_{r}^{q}$$

Seismo-electrical model for unsat soils

MTiG4 Assisi, Italy 18th May 2016

SEBASTIANO FOTI

POLITECNICO DI TORINO

Experimental data

(Cosentini & Foti, 2014)

(Cosentini & Foti, 2014)

SEBASTIANO FOTI POLITECNICO DI TORINO

Case history #3

Building a shear wave velocity model for seismic site response studies

- Laterally constrained inversion
- A-priori information
- Integration of information

Geographical position

Friuli was severely affected6 May 1976 $M_L 6.4$ by a seismic sequence in 197611 September 1976 $M_L 6.1$ $M_L 6.0$ $M_L 6.0$

Topography

MTiG4 Assisi, Italy 18th May 2016

SEBASTIANO FOTI

POLITECNICO DI TORINO

MTiG4 Assisi, Italy 18th May 2016

SEBASTIANO FOTI

POLITECNICO DI TORINO

Laterally Constrained Inversion (LCI)

MTiG4 Assisi, Italy 18th May 2016

SEBASTIANO FOTI

The LCI Algorithm

[Auken and Christiansen, 2004]

A-priori information

MTiG4 Assisi, Italy 18th May 2016

SEBASTIANO FOTI

POLITECNICO DI TORINO

Closing remarks

- Importance of choosing the right technique for the specific application
- Integration of different techniques improve the reliability of the results
- Laboratory experiments can provide a framework and calibration for quantitative interpretation of field tests

Thank you for your attention

POLITECNICO DI TORINO

Acknowledgments

Guido Musso (DISEG - Politecnico di Torino) Laura Valentina Socco (DIATI - Politecnico di Torino) Cesare Comina (University of Torino)

Renato Cosentini (now at University of Pavia)

Flora Garofalo (now at ENI – Italy)

Margherita Maraschini (now at Fugro - UK)

Daniele Boiero (now at Western-Gico - UK)

Claudio Piatti (now at D'Apollonia - Italy)

Claudio Strobbia (now at Western-Gico - UK)

References

- 1. Borsic A., Comina C., Foti S., Lancellotta R., Musso G. (2005) "Imaging heterogeneities with Electrical Impedance Tomography: laboratory results", Geotechnique, vol. 55 (7), 539-547
- 2. Comina C., Cosentini R., Della Vecchia G., Foti S.,and Musso G. 2011. 3D-Electrical Resistivity Tomography monitoring of chemical diffusion in homogeneous and layered soil samples, *Acta Geotechnica, Springer, 6, 195-203*
- 3. Cosentini R., Foti S. 2014. Evaluation of porosity and degree of saturation from seismic and electrical data, Geotechnique, ICE, 64 (4), 278-286, DOI: 10.1680/geot.13.P.075
- 4. Cosentini, R.M., S. Foti, G. Sorbino, 2012. Combined use of geophysical tests for the characterization of a pyroclastic slope, in Geotechnical and Geophysical Site Characterization 4, Eds R.Q. Coutinho & P.W. Mayne, CRC Press, Leiden (NL), ISBN 978-4-415-62136-6, 1395-1402
- 5. Foti S., Lai C.G., Lancellotta R. 2002. Porosity of Fluid-Saturated Porous Media from Measured Seismic Wave Velocities, *Geotechnique, vol. 52 (5), 359-373*
- 6. Foti S., Lai C.G., Rix G.J., Strobbia C. 2014. Surface Wave Methods for Near-Surface Site Characterization, CRC Press, Boca Raton, Florida (USA), 487 pp., ISBN 9780415678766
- 7. Garofalo F. 2014. Physically constrained joint inversion of seismic and electrical data for near-surface applications, PhD dissertation, Politecnico di Torino, Italy
- 8. Garofalo F., S. Foti, F. Hollender, P.Y. Bard, C. Cornou, B.R. Cox, A. Dechamp, M. Ohrnberger, V. Perron, D. Sicilia, D. Teague, C. Vergniault 2016. InterPACIFIC project: Comparison of invasive and non-invasive methods for seismic site characterization. Part II: Inter-comparison between surface-wave and borehole methods, Soil Dynamics and Earthquake Engineering, 82, 241-254
- 9. Martínez-Pagán P., Faz A. & Aracil E. 2009. The use of 2D electrical tomography to assess pollution in slurry ponds of the Murcia region, SE Spain. *Near Surface Geophysics, 2009, 49-61*
- 10. Piatti C., D. Boiero, S. Foti, L.V. Socco 2013a. Constrained 1D joint inversion of seismic surface waves and P-refraction traveltimes", Geophysical Prospecting, 61 (Suppl. 1), 77–93, DOI: 10.1111/j.1365-2478.2012.01071.x
- 11. Piatti C., S. Foti, L.V. Socco, D. Boiero 2013b. Building 3D shear wave velocity models using surface wave testing: the Tarcento basin case history", Bulletin of the Seismological Society of America, 103, 1038-1047, doi: 10.1785/0120120089
- 12. Pugin A.J.-M., Pullan S.E., Hunter J.A. and Oldenborger G.A., 2009, Hydrogeological prospecting using P- and S-wave landstreamer seismic reflection methods, *Near Surface Geophysics*, *315-327*.
- 13. Socco, L.V., D. Boiero, C. Comina, S. Foti, and R. Wisén, 2008, Seismic characterisation of an alpine site: *Near Surface Geophysics, 6, 253-265.*
- 14. Turesson A. and Lind G. 2005. Evaluation of electrical methods, seismic refraction and ground-penetrating radar to identify clays below sands Two case studies in SW Sweden. *Near Surface Geophysics, 2005, 59-70*