Links between phenomenological and micromechanical soil behaviour

Ivo Herle¹ Max Wiebicke^{1,2} Edward Andò² Cino Viggiani²

¹Chair of soil mechanics and foundation engineering, TU Dresden ²Laboratoire 3SR, Grenoble

Assisi, 16th May 2016

Contacts

Soil (sand)

Assembly of solid grains + voids

(Zbraslav sand)

soil behaviour:

- properties of grains

 (size, shape,
 roughness, mineral)
 material constants
- arrangement of grains

 (soil skeleton)
 fabric, structure
 state variables

stress-strain behaviour \rightsquigarrow mainly change of the arrangement of the grains

1/34

Perspectives

 \sim

Phenomenological soil behaviour

Particulate material vs continuum

(Karlsruhe sand)

- soil \equiv quasi-solid (porous) material
- frameworks of theories for solid materials (elastoplasticity, hypoplasticity)
- \rightsquigarrow difficult to establish links to the soil structure

Phenomenological structure characterization

Examples (hardening elastoplasticity)

soil structure \equiv size and the orientation of the yield surface

Phenomenological structure characterization

Examples ("brick" model - Simpson, 1992)

soil structure \equiv number of pulled bricks

Phenomenological structure characterization

Examples ("intergranular strains" - Niemunis & Herle, 1997)

soil structure \equiv interface zone at grain contacts

Micromechanical structure characterization

Orientation: grains, contact planes

(Oda, 1972)

		8 / 34
Introduction	Contacts	Perspectives

Micromechanical structure characterization

Frequency distribution of the long grain axes

Micromechanical structure characterization

Orientation of the grain contact planes

Ausschnitt eines zweidimensionalen Aggregats

(Wiendieck, 1967)

Introduction	Contacts	Perspectives

Micromechanical structure characterization

Orientation of the grain contact planes

(Wiendieck, 1967)

evolution of the contact orientation during deformation (coins)

10/34

Micromechanical structure characterization

Grain contact: theory and reality

(Hanaor et al, 2016)

Structure characterization

Phenomenological description

- models based on continuum (solid) description
- structure is reflected in ingredients arising from a theory
- development based on "curve fitting"

Micromechanical description

- soil structure reflects the arrangement of the grains
- grain contacts are essential for the soil structure
- identification of the grain contacts is crucial for the experimental observation of soil structure

→ Link between phenomenological and micromechanical description?

Focus on hysteretic behaviour: small changes in the structure but large changes in the stiffness!

Our approach to contacts

Two artificial spheres

Contacts

Our approach to contacts

Creation of artificial spheres

16/34

 Introduction
 Contacts
 Perspectives

 Two artificial spheres

Identification of Contacts

Two artificial spheres

Identification of Contacts

Analysis on 5,000 equally distributed branch vectors

18/34

Introduction

Contacts

Perspectives

Two artificial spheres

Identification of Contacts - Local Thresholding

Perspectives

Two artificial spheres

Identification of Contacts - Local Thresholding

Analysis on 5,000 equally distributed branch vectors

Contacts

Introduction

Two artificial spheres

Orientation of Contacts

Lambert azimuthal equal-area projection of the imposed orientations

- creation of 5,000 pairs of spheres with equally distributed branch vectors
- error is defined as the angle between the orientation and the imposed branch vector

		22 / 34
Introduction	Contacts	Perspectives
Accomplies of artificial enhance		

Our approach to contacts

Assemblies of artificial spheres

Assemblies of artificial spheres

Introduction	Contacts	Perspectives
Assemblies of artificial spheres		

Showcase sample

A small showcase sample of 244 particles was created using WooDEM and turned into a grey-scale image with Kalisphera.

Orientation of contacts

- Determined for the contacts detected using the local refinement
- Mean error
 - Watershed $\mu = 7.56^{\circ}$
 - Random Walker $\mu = 1.63^{\circ}$

Our approach to contacts

Two natural grains

High resolution x-ray CT

Two natural grains

Identification of contacts on real shapes

Two natural grains

Identification of contacts on real shapes, 189 contacts

Perspectives

Introduction

Contacts

30 / 34 Perspectives

Our approach to contacts

Experiments in the x-ray CT

Oedometric compression on Hostun Sand

Macroscopic Curves

3D rendering of an image of the initial state

32 / 34

Perspectives

ntroduction

Fabric evolution

Fabric tensor of the first kind (Moment tensor)

$$\mathbf{N} = \frac{1}{C} \sum_{\alpha=1}^{C} \mathbf{o}_{1}^{\alpha} \otimes \mathbf{o}_{2}^{\alpha} \cdots \otimes \mathbf{o}_{n}^{\alpha}$$

Contacts

Fig. 2. The contact distribution of a two dimensional granular material (after loading).

34 / 34