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Constitutive laws . . .

. . . are boring

because their links to reality (”correspondence rules”) are
usually hidden in equations and thus missed.

Constitutive laws are not a mere tool for numerical calculations
. . .

They should rather provide a frame to understand reality, i.e.

a guideline to explore an unkown world
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Matter and mathematics are inherently related
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Crystal growth

Perfect mathematical structures can be formed in niches
(mathematics develops within niches of peace)
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What about fragmented and weathered matter?
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Constitutive equations for soil

Who can answer the following questions:

Which phenomena should they describe?

Write down a constitutive equation for soil

Which are the most widespread equations?

Which are their advantages and disadvantages?

How can they be calibrated?

Why do we need them?
. . .

I know that my car has a motor but I don’t know (and I don’t
care) how it works.
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True triaxial apparatus by Goldscheider
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Goldscheider’s explorations in stress space (1967)

His results were pretty confusing. . .
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Goldscheider’s rules

Goldscheider extracted form his results two rules.

From these two rules barodesy can be inferred!
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Experiments by Goldscheider1967 (1967)

True triaxial tests with sand, concept by Hambly
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Experiments by Goldscheider1967 (1967)

True triaxial tests with sand, concept by Hambly

Photo by M. Topolnicki
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1st Goldscheider rule

Prop. strain paths (PεP): ε1 : ε2 : ε3 = const.
Prop. stress paths (PσP): σ1 : σ2 : σ3 = const.

T = 0: PεP PσP

ε₂

ε₁
.

.

ε1

ε2 ε₂

ε₁
.

.
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2nd Goldscheider rule

T 6= 0

ε₂

ε₁
.

.

ε1

ε2 σ₂

σ₁σ1

σ2

Similar results for clay by Topolnicki (1987)
Some aspects of barodesy Prof. Dimitrios Kolymbas 12 / 31
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Goldscheider’s first rule:

Proportional paths in strain and stress spaces
Proportional stress paths starting from the stress-free state
lead to proportional strain paths

R0: direction of a proportional stress path
D0: direction of a proportional strain path

This rule doesn’t sound very exciting. However:

R0 doesn’t always coincide with D0!

How to determine the relation R(D)?

Some aspects of barodesy Prof. Dimitrios Kolymbas 13 / 31



GI
INNSBRUCK

UNIVERSITÄT

T

Goldscheider’s first rule:

Proportional paths in strain and stress spaces
Proportional stress paths starting from the stress-free state
lead to proportional strain paths

R0: direction of a proportional stress path
D0: direction of a proportional strain path

This rule doesn’t sound very exciting. However:

R0 doesn’t always coincide with D0!

How to determine the relation R(D)?

Some aspects of barodesy Prof. Dimitrios Kolymbas 13 / 31



GI
INNSBRUCK

UNIVERSITÄT

T

Goldscheider’s first rule:

Proportional paths in strain and stress spaces
Proportional stress paths starting from the stress-free state
lead to proportional strain paths

R0: direction of a proportional stress path
D0: direction of a proportional strain path

This rule doesn’t sound very exciting. However:

R0 doesn’t always coincide with D0!

How to determine the relation R(D)?

Some aspects of barodesy Prof. Dimitrios Kolymbas 13 / 31



GI
INNSBRUCK

UNIVERSITÄT

T

Goldscheider’s first rule:

Proportional paths in strain and stress spaces
Proportional stress paths starting from the stress-free state
lead to proportional strain paths

R0: direction of a proportional stress path
D0: direction of a proportional strain path

This rule doesn’t sound very exciting. However:

R0 doesn’t always coincide with D0!

How to determine the relation R(D)?

Some aspects of barodesy Prof. Dimitrios Kolymbas 13 / 31



GI
INNSBRUCK

UNIVERSITÄT

T

Goldscheider’s first rule:

Proportional paths in strain and stress spaces
Proportional stress paths starting from the stress-free state
lead to proportional strain paths

R0: direction of a proportional stress path
D0: direction of a proportional strain path

This rule doesn’t sound very exciting. However:

R0 doesn’t always coincide with D0!

How to determine the relation R(D)?

Some aspects of barodesy Prof. Dimitrios Kolymbas 13 / 31



GI
INNSBRUCK

UNIVERSITÄT

T

Goldscheider’s first rule:

Proportional paths in strain and stress spaces
Proportional stress paths starting from the stress-free state
lead to proportional strain paths

R0: direction of a proportional stress path
D0: direction of a proportional strain path

This rule doesn’t sound very exciting. However:

R0 doesn’t always coincide with D0!

How to determine the relation R(D)?

Some aspects of barodesy Prof. Dimitrios Kolymbas 13 / 31



GI
INNSBRUCK

UNIVERSITÄT

T

Goldscheider’s first rule:

Proportional paths in strain and stress spaces
Proportional stress paths starting from the stress-free state
lead to proportional strain paths

R0: direction of a proportional stress path
D0: direction of a proportional strain path

This rule doesn’t sound very exciting. However:

R0 doesn’t always coincide with D0!

How to determine the relation R(D)?

Some aspects of barodesy Prof. Dimitrios Kolymbas 13 / 31



GI
INNSBRUCK

UNIVERSITÄT

T

Goldscheider’s first rule:

Proportional paths in strain and stress spaces
Proportional stress paths starting from the stress-free state
lead to proportional strain paths

R0: direction of a proportional stress path
D0: direction of a proportional strain path

This rule doesn’t sound very exciting. However:

R0 doesn’t always coincide with D0!

How to determine the relation R(D)?

Some aspects of barodesy Prof. Dimitrios Kolymbas 13 / 31



GI
INNSBRUCK

UNIVERSITÄT

T

The relation R(D0)

The relation R(D0) is conceived as R1(D0
1) 0 0

0 R2(D0
2) 0

0 0 R3(D0
3)

 (1)

Volume reducing proportional strain paths (’consolidations’)
produce stress paths within the compressive octant
This means:

tr D0 = D0
1 + D0

2 + D0
3 < 0→ R1R2R3 < 0 (2)

The relation that maps sums into products is the
exponential mapping

R(D0) = exp(αD0) (3)
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Exponential mapping

The exponential mapping R(D0) = exp(αD0) maps
the plane tr D0 = D0

1 + D0
2 + D0

3 = 0
into a generalized cone with apex at the stress-free state T = 0.
This cone is the critical state surface.
α is related to the critical friction angle ϕc :
With R2/R1 = Kc and

Kc =
1− sinϕc

1 + sinϕc
.

we obtain

α =

√
2
3

ln Kc (4)

In general, α depends on the dilatancy δ:= tr D0.

Some aspects of barodesy Prof. Dimitrios Kolymbas 15 / 31



GI
INNSBRUCK

UNIVERSITÄT

T

Exponential mapping

The exponential mapping R(D0) = exp(αD0) maps
the plane tr D0 = D0

1 + D0
2 + D0

3 = 0
into a generalized cone with apex at the stress-free state T = 0.
This cone is the critical state surface.
α is related to the critical friction angle ϕc :
With R2/R1 = Kc and

Kc =
1− sinϕc

1 + sinϕc
.

we obtain

α =

√
2
3

ln Kc (4)

In general, α depends on the dilatancy δ:= tr D0.

Some aspects of barodesy Prof. Dimitrios Kolymbas 15 / 31



GI
INNSBRUCK

UNIVERSITÄT

T

Exponential mapping

The exponential mapping R(D0) = exp(αD0) maps
the plane tr D0 = D0

1 + D0
2 + D0

3 = 0
into a generalized cone with apex at the stress-free state T = 0.
This cone is the critical state surface.
α is related to the critical friction angle ϕc :
With R2/R1 = Kc and

Kc =
1− sinϕc

1 + sinϕc
.

we obtain

α =

√
2
3

ln Kc (4)

In general, α depends on the dilatancy δ:= tr D0.

Some aspects of barodesy Prof. Dimitrios Kolymbas 15 / 31



GI
INNSBRUCK

UNIVERSITÄT

T

Exponential mapping

The exponential mapping R(D0) = exp(αD0) maps
the plane tr D0 = D0

1 + D0
2 + D0

3 = 0
into a generalized cone with apex at the stress-free state T = 0.
This cone is the critical state surface.
α is related to the critical friction angle ϕc :
With R2/R1 = Kc and

Kc =
1− sinϕc

1 + sinϕc
.

we obtain

α =

√
2
3

ln Kc (4)

In general, α depends on the dilatancy δ:= tr D0.

Some aspects of barodesy Prof. Dimitrios Kolymbas 15 / 31



GI
INNSBRUCK

UNIVERSITÄT

T

Exponential mapping

The exponential mapping R(D0) = exp(αD0) maps
the plane tr D0 = D0

1 + D0
2 + D0

3 = 0
into a generalized cone with apex at the stress-free state T = 0.
This cone is the critical state surface.
α is related to the critical friction angle ϕc :
With R2/R1 = Kc and

Kc =
1− sinϕc

1 + sinϕc
.

we obtain

α =

√
2
3

ln Kc (4)

In general, α depends on the dilatancy δ:= tr D0.

Some aspects of barodesy Prof. Dimitrios Kolymbas 15 / 31



GI
INNSBRUCK

UNIVERSITÄT

T

Exponential mapping

The exponential mapping R(D0) = exp(αD0) maps
the plane tr D0 = D0

1 + D0
2 + D0

3 = 0
into a generalized cone with apex at the stress-free state T = 0.
This cone is the critical state surface.
α is related to the critical friction angle ϕc :
With R2/R1 = Kc and

Kc =
1− sinϕc

1 + sinϕc
.

we obtain

α =

√
2
3

ln Kc (4)

In general, α depends on the dilatancy δ:= tr D0.

Some aspects of barodesy Prof. Dimitrios Kolymbas 15 / 31



GI
INNSBRUCK

UNIVERSITÄT

T

Critical state surface

With the exponential mapping R(D0) = exp(αD0) is obtained a
critical state surface that practically coincides with the
MATSUOKA-NAKAI surface:

σ1

σ2 σ3

——- Barodesy
Matsuoka-Nakai

Mohr - Coulomb —-

σ2

σ3

σ1

Critical state surface
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Goldscheider’s first rule

We can write a constitutive relation for proportional stress
paths:

Ṫ = h R0 ε̇ (5)

with ε̇ := |D|. This is a relation of the rate type.

h is responsible for the stiffness and depends on σ := |T|.

For some reasons, we multiply the right side with the scalar
quantity (f + g):

Constitutive relation for proportional stress paths:

Ṫ = h (f + g) R0 ε̇ (6)
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Goldscheider’s second rule

Not every point of the stress space is accessible 
proportional strain paths starting from a state T 6= 0 lead to
bended stress paths.

Together with the principle of fading memory this yields to the
(experimentally inferred)

Proportional paths as attractors
Proportional stress paths starting from states with T 6= 0 lead
asymptotically to the proportional strain paths obtained when
starting at T = 0
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Goldscheider’s second rule

σ1

√
2σ2
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Barodesy

To comply with Goldscheider’s second rule, we slightly modify
(6) in such a way, that the new equation

includes T
coincides with it for proportional paths, i.e. for T0 = R0.

Thus, from Ṫ = h (f + g) R0 ε̇ we obtain:

The full constitutive equation of barodesy:

Ṫ = h(σ) · (fR0 + gT0) · ε̇ . (7)
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Barodesy

Barodesy offers a completely different mathematical
frame to understand soil

No plastic strains, no yield surfaces, no plastic potential, no flow
rule

Offering a unique evolution equation for stress, barodesy
belongs to the family of hypoplasticity.
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Limit states and peaks

Limit states (yield) are characterized by Ṫ = 0, i.e.
fR0 + gT0 = 0

 

tensorial equation

R0 = T0 (8)

(’flow rule‘ stress-dilatancy relation for peak states)

scalar equation

f + g = 0 (9)

(’yield surface’)
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Dilatancy

Measure of dilatancy:

δ :=
trD
|D|

= trD0 (10)

hydrostatic compression: δ = −
√

3
oedometric compression (ϕ = 30◦): δ = −

√
2

undrained deformation: δ = 0

δ ε̇ =
trD
ε̇
ε̇ = trD =

ė
1 + e

(11)
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ė
1 + e

(11)

Some aspects of barodesy Prof. Dimitrios Kolymbas 23 / 31



GI
INNSBRUCK

UNIVERSITÄT

T

Limit states and peaks

To fulfill equation (9) for limit states, we set

f + g = δ + c3(ec − e) (12)

ec : critical void ratio.

Limit states: f + g = 0

Critical (residual) limit states: δ = 0 and e = ec

Peak limit states: δ > 0 and e < ec .

Partitioning:

f = δ + c3ec (13)
g = −c3e (14)
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Stiffness

h(σ) expresses the stress-dependence of stiffness.

Stiffness
increases (sublinearly) with σ
should not vanish for σ = 0
should not allow compaction below emin

These requirements are fulfilled by:

Stiffness function h(σ)

h = −c4 + c5 σ

e − emin
. (15)
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Consolidations: compressions along PP

T0 = R0  Ṫ = h T0 (f + g) ε̇

Ṫ = σ̇T0  σ̇ = h (f + g) ε̇

with (12) and (11) σ̇ = h [δ + c3(ec − e)] · 1
δ ·

ė
1+e

 
ė
σ̇
=

de
dσ

=
1 + e

1 + c3
ec−e
δ

· 1
h

(16)

this is a differential equation for e(σ)

For e = ec and δ = 0 differential equation for CSL
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ė
1+e

 
ė
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Critical state line ec(σ)

Reasoning ec−e
δ = 0 for CSL.

 Differential equation for CSL:

dσ
dec

= − c4 + c5σ

(1 + ec)(ec − emin)
(17)

Integration CSL:

ec(σ) =
emin + B

1− B
(18)

with

B :=
ec0 − emin

ec0 + 1

(
c4 + c5σ

c4

)− 1+emin
c5

. (19)
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Compression lines

They depend on δ and on initial e.
If the compression includes also deviatoric deformation, then the compressibility

is larger for e > ec
is smaller for e < ec

σ
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The complete constitutive equation

Barodesy:

Ṫ = h ·
[
(δ + c3ec)R0 − c3eT0

]
· ε̇ (20)

R = exp(αD0) (21)

ec =
emin + B

1− B
, B :=

ec0 − emin

ec0 + 1

(
c4 + c5σ

c4

)− 1+emin
c5

(22)

h = −c4 + c5 σ

e − emin
(23)
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Current & future research

Ṫ = h ·
[
(δ + c3ec)R0 − c3eT0

]
· ε̇ (24)

R = exp(αD0) (25)

Increased stiffness at cycles

CSL for calibration

extension to clay

anisotropy
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The end

THANK YOU!
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