Micromechanical Aspects of Natural Formation Process of Geological Grains

Takashi Matsushima Kan Sato University of Tsukuba

The 4th International Workshop on Modern Trends in Geomechanics, Assisi, May 16, 2016

Introduction

Geomaterials are natural materials formed by long-time geological process.

Their physical and mechanical properties differ in different places and change in time as well.

A big challenge in geomechanics is to develop a **simulation tool** for quantitatively evaluating such properties.

Erosion and Sedimentation

Geological process simulation by depth-integrated particle method considering grain segregation (*Matsushima*, JGS annual meeting, 2014,2015)

The erosion/sedimentation model is based on the experimental observation, but evolution of GSD is not considered.↑

Formation of alluvial fan Formation of erosion valley

Impact cratering

Tycho Crater (D=85km)

Ohtake et al.: Nature, 461,10,2009

Formation of central peak by SPH (*unpublished*) CE: Drucker-Prager EP model

Granular Mech. & Geotechnical Eng. Lab, University of Tsukuba

Importance of grain scale processes

On solid planetary surfaces, geomaterials are composed of a lot of solid geological particles of various sizes and shapes.

Such particles were formed and evolved either by crushing, agglomeration or solidification process under a certain natural environment.

These processes greatly affect the bulk mechanical properties of the layers

grain segregation in geological layers

Grant-in-Aid for Scientific Research (B) 2014-16

"Micromechanics of compression, shear and solidification of geo-materials under high pressure"

Takashi Matsushima (PI) Takahiro Hatano (University of Tokyo) Keiko Watanabe (University of Ritsumeikan) Masuhiro Beppu (National Defense Academy) Hiroko Kitajima (Texas A&M University)

Various experiments with common geo-materials

Materials used

Gifu sand mountain sand 90.2% SiO₂ D_{mean} =2.38mm angular

Kashima sand river sand 96.3% SiO₂ D_{mean} =2.08mm round

Experimental program

	today's talk
[1] Single grain crushing test	Sato
[2] One-dimensional compression (ODC) test	Sato
[3] Rotary shear (RS) test	Kitajima, Sato
[4] High-speed projectile impact test	Watanabe
[5] Explosion test	Beppu

[1] Single grain crushing test

Granular Mech. & Geotechnical Eng. Lab, University of Tsukuba

[1] Single grain crushing test

Measure single grain crushing stress

Granular Mech. & Geotechnical Eng. Lab, University of Ts

[2] One-dimensional compression test

[2] One-dimensional compression test

Sato et al. KKHTCNN, 2015

[2] One-dimensional compression test

After 400(MPa) loading

Void ratio – Pressure relation

log (e) – log (p) relation

* σ_Y ratio (15MPa : 4.5MPa) ~ σ_f ratio (50MPa : 18MPa)
* The difference of the value itself must be due to heterogeneous stress transmission (force chain).
*Both have the similar power in plastic compression regime

log (e) – log (p) relation

Various loading level \rightarrow Evolution of grain size distribution

Granular Mech. & Geotechnical Eng. Lab, University of Tsukuba

Evolution of grain size distribution

Steady peaks appear during crushing process

Grain size distribution (cumulative number)

Object	Reference	Fractal Dimension D
Projectile fragmentation of gabbro with lead	Lange et al. [1984]	1.44
Projectile fragmentation of gabbro with steel	Lange et al. [1984]	1.71
Meteorites (Prairie Network)	McCrosky [1968]	1.86
Artificially crushed quartz	Hartmann [1969]	1.89
Plane of weakness model	this paper	1.97
Disaggregated gneiss	Hartmann [1969]	2.13
Disaggregated granite	Hartmann [1969]	2.22
FLAT TOP I (chemical explosion, 0.2 kt)	Schoutens [1979]	2.42
Asteroids (theory)	Hellyer [1971]	2.48
PILEDRIVER (nuclear explosion, 61 kt)	Schoutens [1979]	2.50
Broken coal	Bennett [1936]	2.50
Interstellar grains	Mathis [1979]	2.50
Asteroids (theory)	Dohnanyi [1969]	2.51
Projectile fragmentation of basalt	Fujiwara [1977]	2.56
Sandy clays	Hartmann [1969]	2.61
Terrace sands and gravels	Hartmann [1969]	2.82
Pillar of strength model	Allègre et al. [1982]	2.84
Glacial till	Hartmann [1969]	2.88
Stony meteorites	Hawkins [1960]	3.00
Asteroids	Donnison and Sugden [1984]	3.05
Ash and pumice	Hartmann [1969]	3.54

TABLE 1. Fractal Dimensions for a Variety of Fragmented Objects

Fractal GSD (Turcotte 1986)

 $D_f = 1.4 \sim 3.5$

Granular Mech. & Geotechnical Eng. Lab, University of Tsukuba

Apollonian sphere packing

The observed power D is close to that in Apollonian sphere packing $(D_f=-2.47)$ (*Borkovec, M., De Paris, W., Peikert, R., Fractals, Vol. 2,No.4, 521–526, 1994.*)

Possible comminution mechanism under confinement \rightarrow The Largest particles fitting in the pore survives \rightarrow Second and third peaks appear

Granular Mech. & Geotechnical Eng. Lab, University of Tsukuba

Grain size distribution (cumulative number)

[3] Rotary shear test

[3] Rotary shear test

Sato et al. KKHTCNN, 2015

The device can apply wide range of shear rate 0.75(rpm):($\dot{\gamma}$ =0.21(1/s)) ~ 750(rpm): ($\dot{\gamma}$ =210(1/s))

Shear stress – shear strain relation

The ratio of peak shear stress is not consistent with the ratio of single grain crushing stress \rightarrow Effect of friction (shear without crushing) is included

Void ratio evolution

Void ratio reach the residual value (0.1~0.2) after long shear (shear strain~500) →Constant fabric change provides constant opportunity of crushing (Force chain must play an important role)

Grain size distribution (cumulative volume)

The second and third peaks were observed.

Grain size distribution (cumulative number)

The power is similar to that in Apollonian sphere packing

[4] GSD evolution model

GSD evolution model

(1) Mono-disperse granular system (Radius=R)

$$e_0 = \frac{V_{void}}{V_{solid}}$$

(2) Fill the small grains (Radius=r) into the void with the same void ratio

$$e_0 = \frac{V_{void} - V_{solid}^S}{V_{solid}^S}$$

(3) Number ratio of small grains to large grains

$$\frac{N_{S}}{N_{L}} = \frac{V_{Solid}^{S}}{V_{Solid}^{L}} \left(\frac{R}{r}\right)^{3} = \frac{e_{0}}{1+e_{0}} \alpha^{-3} \qquad \qquad \alpha = \frac{r}{R}$$
size ratio

Granular Mech. & Geotechnical Eng. Lab, University of Tsukuba

GSD evolution model

$$\frac{N_S}{N_L} = \frac{V_{Solid}^S}{V_{Solid}^L} \left(\frac{R}{r}\right)^3 = \frac{e_0}{1+e_0} \alpha^{-3}$$

$$\log N_s - \log N_L = \log \left(\frac{e_0}{e_0 + 1}\right) - 3(\log r - \log R)$$

(4) Fractal dimension

$$D_f \equiv \frac{\log N_s - \log N_L}{\log r - \log R} = \frac{1}{\log \alpha} \log \left(\frac{e_0}{e_0 + 1}\right) - 3$$

on the second and the third peaks

Granular Mech. & Geotechnical Eng. Lab, University of Tsukuba

GSD evolution model

(5) Void ratio after adding the small grains

$$e_{1} = \frac{e_{0}}{\frac{e_{0}+1}{e_{0}}+1} \qquad \qquad 1 + \frac{1}{e_{k}} = \left(1 + \frac{1}{e_{0}}\right)^{k+1}$$

Recursive equation

(6) Breakage stress for the smallest grain determines the 1D compression stress (McDowell and Bolton 2008)

$$\sigma_0 = C \cdot r_{\min}^{-3/m}$$

m: Weibull modulus 5<*m*<10 in various materials

MODELLING

(7) Final relation between e and p $r_k = \alpha^k R \qquad \Rightarrow k = \frac{\log \frac{r_i}{R}}{\log \alpha}$ $\sigma_Y = C \cdot \left(\frac{r_k}{R}\right)^{-3/m} \implies -\frac{3}{m} \log\left(\frac{r_k}{R}\right) = \log C - \log \sigma_Y$ $\therefore \frac{\log(1+\frac{1}{e_k})}{\log(1+\frac{1}{e_0})} = k+1 = \frac{\log\frac{r_k}{R}}{\log\alpha} + 1 = \frac{-\frac{m}{3}(\log C - \log\sigma_Y)}{\log\alpha} + 1$

Validation

The model can provide more or less linear relation in log(e)-log(p) curve. The power becomes consistent with the ODC test when m=3 (with $\alpha=0.1$)

[5] Some observation in planetary science

The power $D_f=-2.0 \sim -2.8$ close to ODC test

Lunar soil GSD (Lunar Sourcebook)

Higher fractal dimension due to repeated comminution? or due to unconfined comminution?

Conclusions

(1) Single grain crushing test
 (2) One dimensional compression test
 (3) Rotary shear test
 were performed with the common geomaterials.

We observe

- * Linear log(e)-log(p) curve in plastic compression
- * Steady peaks and fractal nature in grain size distribution

The proposed model reproduce the above observation.