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Introduction

Geomaterials are natural materials formed by
long-time geological process. 

Their physical and mechanical
properties differ in different
places and change in time
as well. 

A big challenge in geomechanics is to develop a simulation 
tool for quantitatively evaluating such properties.
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Erosion and Sedimentation

↑ Formation of alluvial fan
↓ Formation of erosion valley

Geological process simulation
by depth-integrated particle method 
considering grain segregation
(Matsushima, JGS annual meeting, 2014,2015) 

The erosion/sedimentation model is 
based on the experimental observation,
but evolution of GSD is not considered.
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Impact cratering

Ohtake et al.: Nature, 461,10,2009

Formation of central peak by 
SPH (unpublished)
CE: Drucker-Prager EP model

Tycho Crater (D=85km)
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Importance of grain scale processes

On solid planetary surfaces, geomaterials are composed of 
a lot of solid geological particles of various sizes and 
shapes. 

Such particles were formed and evolved
either by crushing , agglomeration or 
solidification process
under a certain natural environment.

These processes greatly affect
the bulk mechanical properties
of the layers grain segregation

in geological layers



Granular Mech. & Geotechnical Eng. Lab, University of Tsukuba

Grant-in-Aid for Scientific Research (B) 2014-16

6

“Micromechanics of compression, shear and solidification of 
geo-materials under high pressure” 

Takashi Matsushima (PI)
Takahiro Hatano (University of Tokyo)
Keiko Watanabe (University of Ritsumeikan)
Masuhiro Beppu (National Defense Academy)
Hiroko Kitajima (Texas A&M University)

Various experiments with common geo-materials
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Materials used

Gifu sand
mountain sand
90.2% SiO2
Dmean=2.38mm
angular

Kashima sand
river sand
96.3% SiO2
Dmean=2.08mm
round
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Experimental program

[1] Single grain crushing test Sato

[2] One-dimensional compression (ODC) test Sato

[3] Rotary shear (RS) test Kitajima, Sato

[4] High-speed projectile impact test Watanabe

[5] Explosion test Beppu 

today’s talk
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[1] Single grain crushing test
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[1] Single grain crushing test

Measure single grain
crushing stress
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Grain crushing stress
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[2] One-dimensional compression test
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[2] One-dimensional compression test

P
30mm

Specimin

stainless
sleeve

stainless
rods

Sato et al. KKHTCNN, 2015

Measured volumetric strain is modified
considering the deformation of stainless 
rods, sleeve and road cell.
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[2] One-dimensional compression test

After 400(MPa) loading
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log (e) – log (p) relation

* Y ratio (15MPa : 4.5MPa) ～ f  ratio (50MPa : 18MPa)
* The difference of the value itself must be due to

heterogeneous stress transmission (force chain).
*Both have the similar power in plastic compression regime

Kashima
Gifu

15MPa4.5MPaY
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log (e) – log (p) relation

Gifu                

Various loading level → Evolution of grain size distribution
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Evolution of grain size distribution
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Grain size distribution (cumulative number)

Gifu                

Df

fDdAdP )( Fractal (or power law) distribution



Granular Mech. & Geotechnical Eng. Lab, University of Tsukuba 20

Fractal GSD (Turcotte 1986) Df = 1.4 ～ 3.5
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Apollonian sphere packing
The observed power D is close to 
that in Apollonian sphere packing (Df=-2.47)
(Borkovec, M., De Paris, W., Peikert, R., Fractals, Vol. 2,No.4, 521–526, 1994.)

Possible comminution mechanism under confinement
→ The Largest particles fitting in the pore survives
→ Second and third peaks appear
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Grain size distribution (cumulative number)

Kashima
Gifu

Df
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[3] Rotary shear test
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[3] Rotary shear test

P

T

25mm

Teflon
sleeve

Specimen

granite
rock
cylinder

Sato et al. KKHTCNN, 2015

The device can apply wide range of shear rate
0.75(rpm):(   =0.21(1/s)) ～ 750(rpm): (   =210(1/s))  
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Shear stress – shear strain relation

Gifu

Kashima

)(6.0 MPaf  )(0.1 MPaf 

shear rate
shear rate

The ratio of peak shear stress is not consistent with
the ratio of single grain crushing stress
→Effect of friction (shear without crushing) is included
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Void ratio evolution

Gifu Kashima

Void ratio reach the residual value (0.1～0.2) 
after long shear (shear strain～500)
→Constant fabric change provides constant opportunity

of crushing (Force chain must play an important role)
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Grain size distribution (cumulative volume)
Gifu Kashima

The second and third peaks were observed.
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Grain size distribution (cumulative number)

Gifu Kashima

The power is similar to that in Apollonian sphere packing
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[4] GSD evolution model



Granular Mech. & Geotechnical Eng. Lab, University of Tsukuba 30

GSD evolution model
(1) Mono-disperse granular system (Radius=R) 

solid

void

V
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(2) Fill the small grains (Radius=r) into the void
with the same void ratio 
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GSD evolution model
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GSD evolution model

32
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(6) Breakage stress for the smallest grain determines
the 1D compression stress (McDowell and Bolton 2008)

mrC /3
min0


m: Weibull modulus
5<m<10 in various materials
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MODELLING

(7) Final relation between e and p
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Validation

0.1 1 10 100 1000

0.1

1
=0.1

m=3

m=5

vo
id

 ra
tio

 / 
in

iti
al

 v
oi

d 
ra

tio

vertical stress / yield stress

m=10

The model can provide more or less linear relation
in log(e)-log(p) curve.
The power becomes consistent with the ODC test
when m=3 (with =0.1)
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[5] Some observation in planetary science
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Itokawa regolith

The power Df=-2.0～-2.8 close to ODC test

(Tsuchiyama et al., Science 2011)
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Fig. 7.9
fractal dimension =3.3 to 3.8

agglutinate rich soil
has higher fractal dimension
(larger smaller particles)
because it's older

agglutinate rich
(51 to 60%)

lunar soil 78221,8(Fig.9.1)

Table 7.1 (71061,1)
 agglutinate=10 to 17%

Lunar soil GSD (Lunar Sourcebook)

Df=-3.0～-4.0

Higher fractal dimension due to repeated comminution?
or due to unconfined comminution? 
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Conclusions

(1) Single grain crushing test
(2) One dimensional compression test 
(3) Rotary shear test 
were performed with the common geomaterials.

We observe 
* Linear log(e)-log(p) curve in plastic compression
* Steady peaks and fractal nature in grain size distribution

The proposed model reproduce the above observation. 




