Some geomechanical issues of relevance for energy production

Guido Musso Politecnico di Torino

International workshop Modern Trends in Geomechanics Assisi, May 16 -18 2016

Activities into which geomechanics plays a crucial role in the Oil & Gas field

- Design of infrastructures (platform foundations, pipelines, etc..)
- Gas hydrates;
- Fault reactivation earthquakes;
- CO₂ and Methane sequestration;
- Unconventional hydrocarbons (tar sands, gas shales, etc..);
- Reservoir or well stimulation (e.g. water flooding, hydraulic fracturing);
- Subsidence modelling and forecast;
- Well design (wellbore stability, design of wellbore completions, sand production)

Objectives of the talk: improving forecast and modelling of failure at the wellbore scale

New applications

Well casings and completion

Example of well completion (Schlumberger)

Drilling + completion of one well: tens of millions of USD (say <u>50 millions</u>) It depends on geology, off shore / on shore, direction of drilling, completion type

Critical needs:

Characterization of field conditions (saturation, fluid pressure and stress state)

Critical needs:

Can we find a simple way to invert solutions of the stability problem to determine missing values for the far field stress?

6 variables :

- 3 principal stress directions (reduced to 2 if the vertical is one of those);
- 3 principal stress magnitude

De Bellis et al. (2016), MoM

Della Vecchia, Pandolfi, Musso & Capasso (2013) An analytical expression for the determination of in situ stress state from borehole data accounting for breakout size – Int. J. Rock Mech. Mining. Sci

 \rightarrow S_v is the overburden stress: calculated through the density log

Some geomechanical issues of relevance for energy production Guido Musso - Politecnico di Torino \rightarrow Principal directions can be identified through analysis of failures on the well detected through image logs

→ The minimum principal stress S_3 , coincident with S_h except for reverse faulting regimes, can be obtained by hydraulic frac test (both magnitude and direction).

→ Pore pressure p_w can be directly measured (sometimes estimated with geophysical logs)

→ Boundaries for S_H deduced from compressive and tensile failures recovered on circular borehole walls as a consequence of excavation

Circular hole of radius *a* in a isotropic linear elastic half-space:

- → Plane strain ($\Delta \varepsilon_z = 0$)
- → Far-field stresses: $S_H e S_h (S_H > S_h)$
- → Uniform internal pressure p_i and pore pressure p_w .

 \rightarrow Net pressure $p_{net} = p_i - p_w$

Kirsh solution: perturbation of the stress field due to the hole as a function of $S_{\rm H}$ and $S_{\rm h}$

$$\begin{aligned} \sigma_r' &= \frac{1}{2} (S_H' + S_h') \left[1 - \left(\frac{a}{r}\right)^2 \right] + p_{net} \left(\frac{a}{r}\right)^2 + \frac{1}{2} (S_H' - S_h') \left[1 - 4 \left(\frac{a}{r}\right)^2 + 3 \left(\frac{a}{r}\right)^4 \right] \cos 2\theta, \\ \sigma_\theta' &= \frac{1}{2} (S_H' + S_h') \left[1 + \left(\frac{a}{r}\right)^2 \right] - p_{net} \left(\frac{a}{r}\right)^2 - \frac{1}{2} (S_H' - S_h') \left[1 + 3 \left(\frac{a}{r}\right)^4 \right] \cos 2\theta, \\ \tau_{r\theta} &= -\frac{1}{2} (S_H' - S_h') \left[1 + 2 \left(\frac{a}{r}\right)^2 - 3 \left(\frac{a}{r}\right)^4 \right] \sin 2\theta. \end{aligned}$$

On borehole wall (r = a):

$$\sigma'_{\theta}(a,\theta) = (S'_{H} + S'_{h}) - p_{net} - 2(S'_{H} - S'_{h})\cos 2\theta$$

$$\sigma'_{r}(a,\theta) = p_{net}$$

→Maximum hoop stress: $\sigma'_{\theta}=3S'_{H}-S'_{h}-p_{net}$ (for $\theta=\pi/2$ and $\theta=3/2\pi$)

→ Minimum hoop stress: $\sigma'_{\theta}=3S'_{h}-S'_{H}-p_{net}$ (for $\theta=0$ and $\theta=\pi$)

 \rightarrow *Breakout*: compressive failure process that occurs when the maximum hoop stress σ'_{θ} is such that the shear resistance of the rock is exceeded.

If breakout failure occurs (from dipmeters or televiewers) \rightarrow estimate of a lower bondary for $S_H (=S_H^{min})$.

for $\theta = \pi/2$

$$\sigma'_{\theta} = 3S'_H - S'_h - p_{\text{net}},$$

$$\sigma'_z = S'_v + \Delta \sigma'_z,$$

$$\sigma'_r = p_{\text{net}}.$$

Hp. Plane strain excavation process $(\Delta \varepsilon_z = 0).$

$$\Delta \sigma'_z = \nu \left(\Delta \sigma'_r + \Delta \sigma'_\theta \right).$$

Assuming that the material fails:

$$f_C\left(\sigma'_z(S'^{\min}_H), \sigma'_r, \sigma'_\theta(S'^{\min}_H)\right) = f_C(S'^{\min}_H) = 0,$$

Suitable failure criterion

If breakout failure does not occur, the methodology allows the estimate of S_{H}^{max} .

E.g: Mohr-Coulomb criterion $\sigma'_1 = C + N_\phi \sigma'_3$

• Aim: improve the predictive capability of the methodology taking into account the amplitude of breakout failure.

• Previous solutions (Zoback et al., 1985) are base on the thickness of the spalled area t

• Hp. In situ measured breakout size = size of the yielding zone that would originate in the same conditions in a elastic-perfectly-plastic material

 α_b = breakout amplitude θ_b = azimuth of the radius passing from the extremity of the breakout zone

$$\theta_b = \frac{\pi}{2} - \frac{\alpha_b}{2}$$

Principal stresses on the borehole wall for $\theta = \theta_b$ (hp. $\Delta \varepsilon_z = 0$)

$$\begin{aligned} \sigma'_{\theta} &= S'_H + S'_h - p_{\text{net}} - 2(S'_H - S'_h) \cos 2\theta_b, \\ \sigma'_z &= S'_v - 2\nu(S'_H - S'_h) \cos 2\theta_b, \\ \sigma'_r &= p_{\text{net}}. \end{aligned}$$

Hp. In $\theta = \theta_b$ the material is prone to yield:

 \rightarrow The elastic solution holds;

 \rightarrow The stress state satisfies the yielding condition;

 \rightarrow An estimate of S'_H is obtained as a function of the amplitude of the breakout zone.

Caution: stress redistribution induced by inelastic deformation is NOT taken into account

E.g. Mohr-Coulomb criterion
$$\sigma'_1 = C + N_\phi \sigma'_3$$

if
$$\sigma'_{1} = \sigma'_{\theta},$$

 $\sigma'_{3} = \sigma'_{r},$ $S'_{H} = \frac{C - S'_{h}(1 + 2\cos 2\theta_{b}) + (1 + N_{\phi})p_{\text{net}}}{1 - 2\cos 2\theta_{b}},$

[mud pressure lower than vertical stress]

if
$$\sigma_1' = \sigma_{\theta}', \\ \sigma_3' = \sigma_z'. \qquad S_H' = \frac{C + N_{\phi} S_v' + S_h' \left[-1 - 2\cos 2\theta_b (1 - \nu N_{\phi})\right] + p_{\text{net}}}{1 + 2\cos 2\theta_b (\nu N_{\phi} - 1)},$$

[mud pressure higher than vertical stress]

 θ_{b} = azimuth of the radius passing from the extremity of the breakout zone

FEM simulations to validate the analytical approach $N_{\phi} = 4.6 \ (\phi'=40)$ C = 0 $\nu = 0.3$

Simulation sequence:

- 1. Determination of the initial stress state due to S_v and $S_H = S_h$.
- 2. Modelling of the borehole through the application of the net pressure p_{net} in plane strain conditions.
- 3. Increment of S_H keeping fixed p_{net} and S_h in plane strain conditions

Stage in which plastic strains are anticipated: evaluation of the link between $S'_{H} e \theta_{b}$.

NO plastic strains

Advantages of the present solution with respect to previous ones:

- takes into account the influence of p_{net}
- valid for every faulting regime including the case in which the radial stress is the inter- mediate principal stress (and so it does not contribute to the shear resistance if a Mohr–Coulomb criterion is assumed);
- the information about the deepest radius reached by breakout failure is not needed

for different values of $\theta_{\rm b}$. 12 .=45 θ.=60 θ_=75 θ.=90 8 S'_H/p_{net} (-) 30 50 20 40 φ' (°)

Prediction of S'_{H}/p_{net} as a function of ϕ'

- Geomechanical characterization: mostly from laboratory tests on samples from well cores
- Scale of sample and formation are significantly different:

- Need for defining the representativeness of the sample with respect to the problem scale
- Need for evaluating the impact of damage possibly induced by coring

Structure of samples vs structure of geomaterial in situ:

Guido Musso - Politecnico di Torino

Holt M., Brignoli M., Kenter C.J. (2000) Core quality: quantification of coring-induced rock alteration Int. J. of Rock Mechanics and Mining Sciences 37 (2000) 889-907

Holt M., Brignoli M., Kenter C.J. (2000) *Core quality: quantification of coring-induced rock alteration* Int. J. of Rock Mech. and Min. Sci. 37 (2000) 889-907

Faster - Relatively independent on stress

Slower - Moderately dependent on stress

Dependency of wave velocity on stress and fabric (related to Hertz –Mindlin theory, (*))

$$V_{P,S} = \alpha_{P,S} \left(\frac{p'}{p_0}\right)^{\beta_{P,S}}$$

(i)
$$\alpha = 2613 \text{ m/s } \beta = 0.034$$

(ii) $\alpha = 698.88 \text{ m/s } \beta = 0.239$

$$\alpha$$
 virgin > α cored

 $\beta_{\rm virgin} < \beta_{\rm cored}$

(*) e.g. Santamarina & Fam (1997), Houlsby & Wroth (1991); Viggiani & Atkinson (1995)

For idealized assemblies of spherical grains Hertz Mindlin theory (e.g. Makse et al. 2005)

$$V_{p} = \frac{1}{\sqrt{\rho}} \left(\frac{3k_{n}}{20\pi} + \frac{2k_{t}}{45\pi} \right)^{1/2} ((1 - \phi)Z)^{1/3} \left(\frac{6\pi p}{k_{n}} \right)^{1/6}$$

$$V_{s} = \frac{1}{\sqrt{\rho}} \left(\frac{k_{n} + 2/3k_{t}}{20\pi} \right)^{1/2} ((1 - \phi)Z)^{1/3} \left(\frac{6\pi p}{k_{n}} \right)^{1/6}$$

$$P = \text{pressure}$$

$$Z = \text{average coordination number}$$
(number of contacts per grain)
 $\phi = \text{porosity}$

$$\varphi = \text{porosity}$$
Heuristic expression for real geomaterials}
$$\alpha = AF(\phi)$$

$$V = \alpha (p'/p'_{0})^{\beta}$$

Contact theory versus crack closure theory

Stress dependency of the elastic waves can be expressed also in terms of crack closure (e.g. Katsuki et al., 2013)

Normal and shear stiffness of the cracks (stress dependent)

$$k_n = k_{ni} \left(\frac{\sigma'_n}{\sigma'_{ni}} \right)^n$$
 $k_s = k_{si} + k_{sn} \left(\frac{\sigma'_n}{\sigma'_{ni}} - 1 \right)$

In oedometer conditions,

$$V_{p} = V_{pm} \sqrt{\frac{f_{n}(p'_{nor})}{1 + f_{n}(p'_{nor})}} \qquad f_{n}(p'_{nor}) = \frac{2}{1 + K_{0}} \cdot \frac{s \cdot k_{ni} p'_{nor}}{M_{m}} \qquad V_{pm} = \sqrt{M_{m}/\rho}$$
$$V_{s} = V_{sm} \sqrt{\frac{f_{s}(p'_{nor})}{1 + f_{s}(p'_{nor})}} \qquad f_{n}(p'_{nor}) = \frac{s \cdot [k_{si} + k_{sn}(p'_{nor} - 1)]}{G_{m}}$$

 V_m - wave velocity of the rock mineral, M_m - modulus of the mineral, s – average spacing

 G_m

Contact theory versus crack closure theory

Cha, Cho and Santamarina (2009) Long-wavelength P-wave and S-wave propagation in jointed rock masses, Geophysics

Musso, Cosentini, Foti, Comina, Capasso – Geophysics (2015)

Lab characterization –structure effects

$$\alpha = \operatorname{A} F(\phi)$$
$$F(\phi) = e^{-c \cdot \phi}$$

$$\alpha = A \cdot e^{-c\phi}$$

A elastic wave velocity in the solid phase

c structural parameter – to be determined through analysis of a mineralogically homogeneous sample dataset from a given reservoir

Scales of investigation

Equipment for laboratory ultrasonic measurements

 $\lambda = \frac{V}{f}$

Jointed rock investigated as an equivalent continuum when λ greater than 8-10 s (s – joint spacing) (Cha et al. 2009) $f \cong tens \ of \ KHz$

Depth of lateral investigation $\lambda < D < 3\lambda$

α values based on laboratory characterization can be compared with α values deduced from well log measurements

	laboratory	well log	
frequency	ultrasonic (> 30 kHz)	sonic (10 Hz < f < 10 kHz)	
saturation state	imposed natural		
stress state	imposed	reconstructed	
porosity	measured (directly)	measured (indirectly - logging)	
scale of investigation	sample size (10 ⁻² m)	receivers space (m or tens of m)	
effects on structure	coring damage	joints	

This is possible provided that:

- (1) reference is made to the same saturation condition (fluid substitution can be applied);
- (2) the stress state in the well is known

Fluid substitution

According to Biot Gassmann theory, provided that frequency is lower than characteristic:

$$f < f_c = \frac{\phi \cdot \eta}{2 \cdot \pi \cdot \rho_{fl} \cdot k}$$

- **•:** porosity;
- **η:** viscosity
- ρ_{fl} fluid density
- **k**: permeability

the following relationship holds:

 $K_{fl,} K_g, K_{mix}, K_{sk}$: volumetric stiffness of fluid, grain, mixture, skeleton

Example from a carbonatic reservoir

Example from a carbonatic reservoir

Step 1: on basis of the $F(\phi)$ from analysis of lab data and porosity log, the profile of expected α along the well is obtained [α^{pseudo}]

$$\alpha_{p}^{pseudo}(\phi) \qquad \qquad A_{p}^{*} F(\phi) = A_{p}^{*} \exp(-\mathbf{c}^{*} \phi)$$

		Vp	
DEPTH (m)	φ(-)	F(φ)	α _p (φ) (m/s)
4014.22	0.114	0.604	3785
4014.98	0.119	0.592	3708
4015.74	0.106	0.628	3934
4016.50	0.094	0.660	4135
4017.26	0.059	0.770	4824
4018.03	0.038	0.844	5288
4018.79	0.047	0.814	5099
4019.55	0.0910	0.670	4196

Example from a carbonatic reservoir

SI (z) = $\alpha^{\text{well}}(z) / \alpha^{\text{pseudo}}(\phi)$

Step 2:

the best estimates of $\alpha^{\text{well}}(z)$ (and $\beta^{\text{well}}(z)$) are obtained as the couple of values that predicts the measured velocity

DEPTH	α _p (φ)	р'	V _p dry	α_{p}^{well}	SI	6000 —
(m)	(m/s)	(Mpa)	(m/s)	(m/s)	(-)	(s) 5500
4014.22	3785	11.52	5472	3610	0.954	
4014.98	3708	11.52	5302	3768	1.016	
4015.74	3934	11.53	5183	4656	1.184	
4016.5	4135	11.53	4991	4000	0.967	4500 4500 1 4500 1 1 1 1 1 1 1 1 1 1
4017.26	4824	11.53	5621			
4018.03	5288	11.53	5722			4000 a = 4000 b = 0.048
4018.79	5099	11.53	5253			3500
4019.55	4196	11.53	5253			

Isotropic stress p' (MPa)

Example from a carbonatic reservoir

SI is low where resistivity is low

(associated to local damaged /weaker zones)

- Grochau, M.H. and B. Gurevich, 2008, Investigation of core data reliability to support time-lapse interpretation in Campos Basin, Brazil: Geophysics, **73**, 2: E59-E65.
- Grochau, M. and B. Gurevich, 2009, Testing Gassmann fluid substitution: sonic logs versus ultrasonic core measurements: Geophysical Prospecting, **57**, 75-79.

Colombia (Apiay-Guatiquía oil field) Data from Mantilla (2002) Ph. D. thesis, Stanford

Kashagan – well KE5 – structural indexes

Application to a case study

Capasso, Mantica and Musso. Long-term stability study of open-hole completions in a producing hydrocarbon field. *ARMA 08-238 (San Fransisco)*

Production history

Load history from Hydro-Dynamic simulation; a logarithmic pressure distribution is determined and applied at each time step according to discharge and steady state conditions

Drilling history

Removal of elements and application of mud pressure on the borehole wall

Application to a case study

Table of time of failures (*)

deviation	azimuth	failure mode	UNIT 1	UNIT 2	UNIT 3
0°	vertical	Tensile	after 10 yrs	after 10 yrs	drilling
		Shear	after 1 yr	after 1 yr	after 10 yrs
15°	5°N	Tensile	after 8 yrs	after 8 yrs	drilling
		Shear	after 1 yr	after 2 yrs	no failure
	50°N	Tensile	after 8 yrs	after 10 yrs	drilling
		Shear	after 1 yr	after 2 yrs	after 8 yrs
	95°N	Tensile	after 10 yrs	after 18 yrs	drilling
		Shear	after 1 yr	after 2 yrs	after 2 yrs
30°	5°N	Tensile	after 3 yrs	after 3 yrs	drilling
		Shear	after 2 yrs	after 10 yrs	no failure
	50°N	Tensile	after 8 yrs	after 8 yrs	drilling
		Shear	after 1 yr	after 2 yrs	after 8 yrs
	95°N	Tensile	no failure	no failure	drilling
		Shear	start-up	start-up	start-up

(*) Failure assumed to be relevant for $\epsilon_s^{pl} 0.04\%$

Acknowledgments

Gabriele Della Vecchia (Politecnico di Milano) Anna Pandolfi (Politecnico di Milano) Gaia Capasso (ENI E&P) Renato M. Cosentini (Università di Pavia) Sebastiano Foti (Politecnico di Torino) Cesare Comina (Università di Torino)

