

Mechanical and Numerical Modeling of Gas Hydrate Bearing Sediments

Marcelo Sánchez

Zachry Department of Civil Engineering Texas A&M University (USA)

J. Carlos Santamarina

King Abdullah University of Science and Technology (Saudi Arabia)

Xuerui (Gary) Gai

Zachry Department of Civil Engineering Texas A&M University (USA)

Ajay Shastri

Zachry Department of Civil Engineering Texas A&M University (USA)

Outline

- **Brief introduction to Hydrate Bearing Sediments (HBS)**
- Basic components of the proposed coupled THCM framework for HBS
- **Simple benchmarks involving HBS**
- HBS mechanical modeling
- Validation
- Final remarks

Gas Hydrate Bearing Sediments (HBS)

Gas hydrates are solid ice-like materials that consists of guest gas molecules encased in a water matrix.

- \checkmark marine sediments
- ✓ permafrost
- Methane hydrates sediments are highly compacted (stable) under deposit conditions and are likely behave bonded to as sedimentary soils

Soga et al. (2006)

Gas Hydrate Bearing Sediments (HBS)

Relevance:

- \checkmark methane recovery, energy resource
- ✓ instability (boreholes and slopes)
- ✓ effect on submarine infrastructure
- ✓ climate change
- \checkmark CO₂ sequestration

(Kvenvolden and Lorenson, 2001; www.pet.hw.ac.uk; Ballough et al.]

THM Coupled Phenomena

• Temperature

HBS – Coupled Phenomena and Phase Boundaries

Numerical Code

Coupled THM Formulation

Phases and species

 $\begin{array}{l} & & & \\ &$

 $\frac{\mathbf{V}_{inquita}}{\mathbf{E}_{guida}} = \frac{\mathbf{V}_{inquita}}{\mathbf{E}_{guida}} = 1 - S_{g}$ \mathbf{E}_{guida}

Three phases:

- solid (s) : mineral
- liquid (1) : water + air dissolved
- gas (g): mixture of dry air and water vapour

Three species:

- mineral (-) : the mineral is coincident with solid
- water (w) : as liquid or evaporated in the gas phase
- air (a): dry air, as gas or dissolved in the liquid phase

HBS - Species and Phases

HBS - Mass Balance Equations

HBS – Balance Equations

Mathematical Formulation

• Mass of water (P_1)

$$\frac{\partial}{\partial t} \left[\underbrace{(\rho_{\ell} S_{\ell} + \alpha \rho_{h} S_{h} + \rho_{i} S_{i}) \phi}_{\text{mass water per unit volume}} \right] + \nabla \cdot \left[\underbrace{\rho_{\ell} q_{\ell} + \rho_{\ell} S_{\ell} \phi v}_{\text{w in liquid}} + \underbrace{\alpha \rho_{h} S_{h} \phi v}_{\text{w in hydrate}} + \underbrace{\rho_{i} S_{i} \phi v}_{\text{w in ice}} \right] = f^{w}$$

• Mass of methane (P_g)

Mass of solute (c_i)

 $\frac{\partial}{\partial t} (\underline{C_s S_\ell \rho_\ell \phi}) + \nabla . [\underline{D \rho_\ell \nabla C_s} + \underline{C_s \rho_\ell q_\ell} + \underline{C_s \rho_l S_l \phi v}] = f^s$

non advective

flux of s

s in liquid

$$\frac{\partial}{\partial t} \underbrace{\left\{ \left[\rho_{g} S_{g} + (1 - \alpha) \rho_{h} S_{h} \right] \phi \right\}}_{\text{mass of methane per unit volume}} + \nabla \cdot \left[\underbrace{\rho_{g} q_{g} + \rho_{g} S_{g} \phi v}_{\text{m in gas}} + \underbrace{(1 - \alpha) \rho_{h} S_{h} \phi v}_{\text{m in hydrate}} \right] = f^{m}$$

s in liquid

Mass of solid (\$\$)

$$\frac{\partial}{\partial t} \underbrace{\left[\rho_{s}\left(1-\phi\right)\right]}_{\substack{\text{mass min eral}\\\text{per unit volume}}} + \nabla \cdot \underbrace{\left[\rho_{s}\left(1-\phi\right)\mathbf{v}\right]}_{\substack{\text{m in solid}}} = 0$$

$$\frac{\partial}{\partial t} \underbrace{\left\{ \left[e_{s} \rho_{s} \left(1 - \phi \right) \right] + \left(e_{\ell} \rho_{\ell} S_{\ell} + e_{g} \rho_{g} S_{g} + e_{h} \rho_{h} S_{h} + e_{i} \rho_{i} S_{i} \right) \phi \right\}}_{\text{transport in } \ell} + \nabla \cdot \mathbf{i}_{c} + \nabla \cdot \left[\underbrace{e_{\ell} \rho_{\ell} (\mathbf{q}_{\ell} + S_{\ell} \phi \mathbf{v})}_{\text{transport in } g} + \underbrace{e_{g} \rho_{g} (\mathbf{q}_{g} + S_{g} \phi \mathbf{v})}_{\text{transport in } h} + \underbrace{e_{i} \rho_{i} S_{i} \phi \mathbf{v}}_{\text{transport in } i} + \underbrace{e_{s} \rho_{s} (1 - \phi) \mathbf{v}}_{\text{transport in } s} \right] = \mathbf{f}^{E} \mathbf{F}$$

Momentum (u)

Energy (T)

$$\nabla \cdot \boldsymbol{\sigma} + \boldsymbol{b} = \boldsymbol{0}$$

mass s per

unit volume

HBS - Constitutive Equations and Equilibrium Restrictions

EQUATION	VARIABLE NAME	VARIABLE					
Constitutive Equations							
Fourier's law	conductive heat flux	i _c					
Darcy's law	liquid and gas advective flux	q _I , q _g					
Retention curve	liquid degree of saturation	5, , 5 _g					
Fick's law	vapour and air non-advective fluxes	i _g w , i _l m					
Mechanical model	stress tensor	σ					
Phase density	liquid density	ρ,					
Gases law	methane density	ρ _g					
Equilibrium Restrictions							
Hydrate dissociation/formation	Hydrate Saturation	S _h					
Ice thaw/formation	Ice Saturation	S _i					
Henry's law	Methane dissolved mass fraction	ω _l α					
Psychrometric law							

HBS - Phases Properties and Phase Change

Mass Density ρ [kg/m ⁻³]	Specific Energy			Thermal
	Expression	Latent heat L [J/g]	Specific heat c [J/(g K)]	Conductivity λ [W/(m.K)]
998	$\mathbf{e}_{\ell} = \mathbf{c}_{\ell} \left(\mathbf{T} - \mathbf{T}_{o} \right)$	-	4.2	0.58
917	$\mathbf{e}_{\mathrm{i}} = -\mathbf{L}_{\mathrm{fuse}} + \mathbf{c}_{\mathrm{i}} \left(\mathbf{T} - \mathbf{T}_{\mathrm{o}} \right)$	334 fusion	2.1	2.3
gas law (see text)	$e_{g} = c_{g} \left(T - T_{o} \right)$	-	 1.9 V=const 2.5 P=const 	0.05 (P-dependent ^a)
910	$\mathbf{e}_{\mathrm{h}} = \mathbf{L}_{\mathrm{diss}} + \mathbf{c}_{\mathrm{h}} \left(\mathbf{T} - \mathbf{T}_{\mathrm{o}} \right)$	339 dissociation	2.1	0.6 (T-dependent ^b)
2650	$\mathbf{e}_{\mathrm{s}} = \mathbf{c}_{\mathrm{s}} \left(\mathbf{T} - \mathbf{T}_{\mathrm{o}} \right)$	-	0.7 quartz	8 quartz
		-	0.8 calcite	3 calcite
	Mass Density 0 [kg/m ⁻³] 998 917 gas law (see text) 910 2650	Mass DensitySpecific Specific $DensityD [kg/m^{-3}]$ Expression 998 $e_{\ell} = c_{\ell} (T - T_{o})$ 998 $e_{\ell} = c_{\ell} (T - T_{o})$ 917 $e_{i} = -L_{fuse} + c_{i} (T - T_{o})$ $gas law(see text)$ $e_{g} = c_{g} (T - T_{o})$ 910 $e_{h} = L_{diss} + c_{h} (T - T_{o})$ 2650 $e_{s} = c_{s} (T - T_{o})$	Mass DensitySpecific EnergyDensity $D[kg/m^{-3}]$ ExpressionLatent heat $L[J/g]$ 998 $e_{\ell} = c_{\ell} (T - T_o)$ -998 $e_{\ell} = c_{\ell} (T - T_o)$ -917 $e_i = -L_{fuse} + c_i (T - T_o)$ 334 fusiongas law (see text) $e_g = c_g (T - T_o)$ -910 $e_h = L_{diss} + c_h (T - T_o)$ 339 dissociation2650 $e_s = c_s (T - T_o)$ -	Mass Density $o [kg/m^{-3}]$ ExpressionLatent heat $L [J/g]$ Specific heat $c [J/(g K)]$ 998 $e_{\ell} = c_{\ell} (T - T_o)$ -4.2917 $e_i = -L_{fuse} + c_i (T - T_o)$ 334 fusion2.1gas law (see text) $e_g = c_g (T - T_o)$ -1.9 V=const 2.5 P=const910 $e_h = L_{diss} + c_h (T - T_o)$ 339 dissociation2.12650 $e_s = c_s (T - T_o)$ -0.7 quartz -2650 $e_s = c_s (T - T_o)$ -0.8 calcite

$$\mu_{\ell} \left[\text{Pa.s} \right] = 2.1 \cdot 10^{-6} \exp \left(\frac{1808.5 \ ^{\circ}\text{K}}{\text{T}} \right)$$

$$\rho_{\ell} = \rho_{\ell o} \left(1 + \frac{P_{\ell}}{B_{\ell}} \right) \left[1 - \beta_{T\ell} \left(\frac{T - 277 \,^{\circ} K}{5.6} \right)^2 \right]$$

$$\mu_{g} \left[\text{Pa.s} \right] = 10.3 \cdot 10^{-6} \left[1 + 0.053 \frac{\text{P}_{g}}{\text{MPa}} \left(\frac{280 \text{ }^{\circ}\text{K}}{\text{T}} \right)^{3} \right]$$

$$\lambda_{hbs} = \left[\left(1 - \varphi \right) \lambda_s^\beta + \varphi \left(S_h \lambda_h^\beta + S_i \lambda_i^\beta + S_g \lambda_g^\beta + S_\ell \lambda_\ell^\beta \right) \right]^{\frac{1}{\beta}}$$

HBS – Coupled Phenomena and Phase Boundaries

- > PT Paths: Four Regions
 - ✓ Phase boundaries for methane hydrate (H), gas (G), water (W) & ice (I).

Pressure-Temperature paths

Pressure-Temperature paths

Hydrate formation

Pressure-Temperature paths

Hydrate Dissociation - Heating

HBS – Mechanical Behavior at Constant S_h

HBS – Mechanical Behavior During Dissociation Under Stress

HBS – Mechanical Behavior

□ Some previous developments

- Mohr–Coulomb based model
 - Rutqvist and Moridis (2007)
 - ➢ Klar, Soga and Ng (2010)
- Based on an elasto–viscoplastic framework
 - Kimoto, Oka, Fushita and Fujiwaki (2007).
 - Kimoto, Oka, Fushita (2010)
- Modified Cam-Clay based model
 - Sultan and Garziglia (2011)
 - Uchida, Soga and Yamamoto (2012)

HBS – Mechanical Behavior

□ The mechanical behavior of HBS depends on

- Hydrate concentration
- Pore habit
- Stress level
- Stress history

Hydrates in soils

- contribute to support the external applied stresses,
 - \checkmark the strain partition concept is used to compute this contribution;
- alter the mechanical behavior of sediments, e.g. provide hardening and dilation enhancement
 - $\checkmark\,$ a critical state model for the sediment to account for these effects.

□ Strain partition concept

Proposed by Pinyol et al. (2007) for clayed cemented materials

 $\varepsilon^{v} = \varepsilon^{v}_{ss} + C_{h}\varepsilon^{v}_{h} \qquad \varepsilon^{q} = \varepsilon^{q}_{ss} + C_{h}\varepsilon^{q}_{h}$ $\varepsilon^{v}_{h} = \chi\varepsilon^{v}_{ss} \qquad \varepsilon^{q}_{h} = \chi\varepsilon^{q}_{ss}$ $\varepsilon^{q}_{h} = \chi\varepsilon^{q}_{ss}$ $\varepsilon^{q}_{h} = \chi\varepsilon^{q}_{ss}$

Hydrate Model

$$\boldsymbol{\sigma}_h = e^{-L} \mathbf{D}_{h0} \boldsymbol{\varepsilon}_h = \mathbf{D}_h \boldsymbol{\varepsilon}_h$$

$$r_{(L)} = r_0 e^{r_1 L} = u_h$$

$$C_h = \phi S_h$$

$$\chi = \chi_0 e^{-\frac{L}{2}}$$

Final Stress-Strain Relationships

$$d\mathbf{\sigma}' = d\mathbf{\sigma}_{ss}' + \frac{C_h \chi}{1 + C_h \chi} d\mathbf{\sigma}_h \qquad d\mathbf{\sigma}' = \left[\mathbf{D}_{ss} + \left(\frac{C_h \chi}{1 + C_h \chi} \right)^2 \mathbf{D}_h \right] d\mathbf{\varepsilon} + \left[\mathbf{d}_{C_h} + \mathbf{\sigma}_h \left(\frac{C_h \chi}{1 + C_h \chi} - \left(\frac{C_h \chi}{1 + C_h \chi} \right)^2 \right) \right] dC_h$$

 \Box Effect of Hydrate Saturation – Constant S_h

Synthetic Samples – Triaxial Conditions

Experimental data from Hyodo et al. (2013)

HBS – Mechanical Model Validation

 \Box Effect of Pore Habit – Constant S_h

Synthetic Samples – Triaxial Conditions

Experimental data from Masui et al. (2005)

 \Box Effect of Hydrate Saturation – Constant S_h

Natural Samples – Triaxial Conditions

Experimental data from Joneda et al. (2015)

HBS – Mechanical Model Validation

Effect of Hydrate Dissociation

Effect of Hydrate Dissociation

Natural Samples – Oedometric Conditions

Experimental data from Santamarina et al. (2015)

HBS – Mechanical Model Validation

Effect of Hydrate Dissociation Oedometric Conditions

Code verification

> Maximum gas production from HBS by depressurization

✓ Analytical solution – Cylindrical radial flow - Steady state conditions

Code verification

- Maximum gas production from HBS by depressurization
 - ✓ Analytical solution Cylindrical radial flow Steady state conditions
 - 2D axisymmetric model
 - A single vertical well producing
 - Very fine grid (2503 elements)

$$k_{HBS} = k_{sed} \left(1 - S_h \right)^N$$

 $k_{HBS} = 1 \times 10^{-12} \text{ m}^2$ $S_b = 0.5$

L= 1.20 km

b=0.40 m

 $r_w = 0.1 m$

i	Axisymmetric					
	Ocean / Permafrost Impermeable overburden layer					
Wellbore	Sediment <i>k_{sed}:</i> permeability coeff. of free hydrate sed.	Hydrate bearing sediment <i>k_{HBS}</i> : ^{permeability} coefficient of hydrate bearing sediment				
-	Impermeable underburden layer					

Case	h _{jter} (m)	<i>h</i> _w (m)	T (°C)	$\frac{h^* - h_w}{h_{gar} - h^*}$
А	1020	306	12	7.14
В	1224	306	12	2.14
С	1224	510	12	1.44
D	1224	306	10	0.91

Code verification

> Maximum gas production from HBS by depressurization

✓ Analytical solution – Cylindrical radial flow - Steady state conditions

Gas Production in-situ by Heating

Gas Production in-situ by Depressurization

- ➢ In this work we present a coupled THCM formulation for modeling the behavior of gas hydrates bearing sediments.
- The proposed approach incorporates the fundamental physical and chemical phenomena that control de behavior of gas hydrates bearing sediments.
- The FE program CODE_BRIGHT has been adapted to incorporate the main balance and constitutive equations related to problems involving gas hydrate sediments.
- An advanced mechanical model for HBS has been proposed and validated.
- Cases studies, at actual scale, modeling the different strategies for gas (methane) production has been analyzed, showing the potential of the proposed approach to model these kinds of problems

Acknowledgements

The authors would like to acknowledge the financial support from:

NETL (National Energy Technology Laboratory),

DOE (Department of Energy, US).

Project: THCM Coupled Model For Hydrate-Bearing Sediments: Data Analysis and Design of New Field Experiments (Marine and Permafrost Settings)

Award No.: DE-FE0013889.

