International workshop Modern Trends in Geomechanics Assisi, May 16 -18 2016

Multiphysics couplings and instability in geomechanics

Jean Sulem, Ioannis Stefanou

Laboratoire Navier/CERMES, Ecole des Ponts ParisTech, CNRS UMR 8205, Université Paris-Est, Marne-la-Vallée, France

jean.sulem@enpc.fr

Ecole des Ponts ParisTech

Deformation bands in geomechanics

- Deformation bands in the form of shear or compaction bands are observed are observed on a very large range of scales from submillimetric (grain size) to kilometric scale (geological structures).
- Strong heterogeneity of mechanical (e.g. strength) and physical properties (e.g. porosity, permeability) induced by the deformation bands.
- Major role of localized deformation bands
 - ✓ in the failure of engineering structures (e.g. foundations, oil wells instability..),
 - \checkmark in the nucleation of earthquakes and landslides
 - ✓ in the flow of fluids (hydrocarbon exploration and production, deep waste storage repositories, CO2 sequestration, geothermal systems...)

Labaume et al, 2001, J. Struct. Geol.

Sulem & Ouffroukh, 2006, Int. J. Rock Mech. Min. Sci

Valley of fire, Nevada, Courtesy of I. Stefanou

Papamichos et al. 2001, Int. J. Num. An. Meth. Geom. Multiphysics weakening mechanisms Softening behavior favors strain localization.

- Mechanical degradation of the rock properties (microcracking, grain crushing and grain size reduction...), (e.g. Das et al., 2011).
- Thermal pressurization of the pore fluid (e.g. Rice, 2006, Ghabezloo & Sulem, 2009)
- Chemical reactions such as dissolution/ precipitation, mineral transformation at high temperature (dehydration of minerals, decomposition of carbonates, ...) (e.g. Castellanza & Nova, 2004, Hu & Hueckel, 2007, Sulem & Famin, 2009, Sin & Santamarina, 2010, Brantut & Sulem 2012, Veveakis et al. 2014).

COMPACTION BANDS

Strong coupling between chemical weakening and dissolution kinetics

Stefanou & Sulem, 2014, J. Geoph. Res.

Creep due to CO₂ injection in Lavoux limestone

Y. Le Guen, F. Renard, R. Hellmann, E. Brosse, M. Collombet, D. Tisserand, and J.-P. Gratier, "Enhanced deformation of limestone and sandstone in the presence of high P_{co2} fluids," *Journal of Geophysical Research*, 2007, 112.

R. H. Brzesowsky, S. J. T. Hangx, N. Brantut, and C. J. Spiers, "Compaction creep of sands due to time-dependent grain failure: Effects of chemical environment, applied stress and grain size," *Journal of Geophysical Research*, 2014, 119.

Is the deformation homogeneous?

Pure compaction bands?

What is the influence of a reactive fluid flow on

deformation band formation?

Conceptual model & chemical softening

Increase of the effective specific area of grains

Acceleration of dissolution

Grain crushing & damage

Chemical Softening

Distinction of scales

Reaction kinetics (micro-scale)

$$\underset{(3)}{\text{solid}} + \underset{(1)}{\text{solvent}} \rightleftharpoons \underset{(2)}{\text{solution}}$$

e.g. dissolution of quartz $SiO_2(solid)+2H_2O(liquid) \rightleftharpoons H_4SiO_4(aqueous solution)$

or carbonate $CaCO_3(solid)+H_2CO_3(aqueous solution) \rightleftharpoons Ca(HCO_3)_2(aqueous solution)$

$$\frac{\partial w_2}{\partial t} = k \frac{S}{e} \left(1 - \frac{w_2}{w_2^{eq}} \right)$$

Hu & Hueckel, 2007

 W_2 is the mass fraction of the dissolution product in the fluid

- k^* is a reaction rate coefficient
- *e* is the void ratio

 $S \propto \frac{1}{D}$ is the specific area of a single grain of diameter D

Grain breakage: Einav (2007), JMPS

Baud et al. (2009)

Constitutive behavior (macro-scale)

Non local chemical softening

$$\frac{\partial \zeta}{\partial t} = -\frac{\mu_3}{\mu_2} \frac{\rho_f}{\rho_s} e \zeta \frac{\partial w_2^M}{\partial t}$$

$$w_2^M = \frac{1}{V_T} \int_{V_T} w_2 dV \approx w_2 + \ell_c^2 \frac{\partial^2 w_2}{\partial z^2}$$

 ℓ_c characteristic length

Modified Cam-Clay plasticity model

$$f \equiv q^2 + M^2 p'(p' - p_c') = 0$$

$$p_c' \equiv p_R' - \left(p_R' - p_0'\right) \zeta^{\kappa}$$

The chemical softening parameter is the ratio of the current solid mass over its initial value

$$\varsigma = \frac{M_s}{M_0}, 0 \le \varsigma \le 1$$

Linear stability analysis of oedometric compaction

s is the growth coefficient of the perturbation (Lyapunov exponent)

Linear Stability Analysis & zones of instability

Compaction banding in a reservoir

Carbonate grainstone

Initial stress state at 1,8km (oedometric)

 $\sigma_{V} \simeq 45 \text{MPa}$ $p_{f} \simeq 18 \text{MPa}$

> σ_V =const. open flow

modeling window (oedometric conditions) Elastic constants

K = 5GPa

G = 5GPa

Cam clay yield surface $p'_R = 30\% p'_0$ $p'_0 = 35$ MPa M = 0,9

Physical properties $c_{hv} = 10^{-3} \text{ m}^2 \text{ s}^{-1}$ $D_0^{50} = 0,2$ mm n = 25%**Chemical parameters** $k^* = 1.610^{-10} \,\mathrm{ms}^{-1}$ $\kappa = 2$ Grain crushing a = 1 MPaparameter:

Homogeneous deformation under open flow conditions

t [months]

Effect of chemical heterogeneity

Localization – compaction banding

THCM COUPLINGS AND STABILITY OF FAULT ZONES

Sulem & Famin, 2009, *J. Geoph. Res.* Brantut & Sulem, 2012, *J. Appl. Mech.* Sulem & Stefanou, 2016, *GETE*.

Energy partitioning during an earthquake

During an earthquake, the potential energy (mainly elastic strain energy and gravitational energy) stored in earth is released as:

• Radiated energy : Energy radiated by seismic waves

 $\log_{10}E \sim 4.5 + 1.5 M_w$ (E in joules, M_w is the magnitude of the earthquake)

For example for $M_w = 7$, $E = 10^{15}$ Joules, for $M_w = 9$, $E = 10^{18}$ Joules

• Fracture energy: Energy associated with expanding the rupture area over the fault zone

• Thermal energy: Part of the frictional work (energy required to overcome fault friction) converted into heat

More than 90% of the mechanical work is dissipated into heat

Thermally induced weakening mechanisms are of major importance

Thickness of Principal Slip Zones Examples from drilling in active faults

Fault system	Earthquake	Magnitude	Thickness of the PSZ	Reference
Nojima fault	Kobe, Japan (1995)	7.2	1 mm	Otsuki, 2003
Chelungpu fault	Chi Chi <i>,</i> Taiwan (1999)	7.6	few mm	Kuo et al., 2013
Longmenshan fault	Wenchuan, China (2008)	8	1cm	Li et al. , 2013

Slip is localized in extremely thin zones

A key parameter: Width of the deformation band

Very narrow localized shear zone (typically \sim 100 μ m) nested within the fault core where frictional heat is concentrated

Major role of the width of the slip zone:

- in the energy budget of the system: control of the feedback of the dissipative terms (e.g. frictional heating)
- in the rupture propagation mode (stronger weakening for thinner shear zones)

Evolution of the width of the slip zone in time:

Stronger weakening favors a decrease of the localized zone thickness, heat and fluid diffusion tend to broaden it.

Observations of thermal decomposition of minerals in exhumed faults

Calcite crystal showing decarbonation

Spoleto thrust fault in Central Italy. Principal slip zone (0.3 to 1mm) 5-10km of accumulated displacement

(from Collettini et al., 2012, Geology)

Amorphous silicate phase: dehydration and amorphization of poorly cristalline clays

Deep earthquakes in subduction zone triggered by metamorphic reactions STRENGTH

Metamorphic dehydration reactions may produce weaker products example: dehydration of lizardite (serpentinite)

Chemically weakening and slip instability

Brantut & Sulem, (2012), J. Appl. Mech.

Reaction rate:

$$\frac{\partial \xi}{\partial t} = A(1-\xi) \exp\left(-\frac{E_a}{RT}\right)$$

Constitutive model: (rate hardening/reaction weakening)

$$\tau = f\left(\dot{\gamma}, \xi\right)\sigma', \quad f\left(\dot{\gamma}, \xi\right) = f_0 + a\ln\left(\dot{\gamma}/\dot{\gamma}_0\right) - b\xi$$

Energy balance:

Effect of lizardite dehydration @ 30km depth along subduction zones

Table 1

Parameter values for lizardite dehydration at a depth of around 30 km,44

Quantity	Value
Friction coefficient, f ₀	0,6
Rate strengthening parameter, a	0,002
Reaction weakening parameter b	0,5
Specific heat capacity, pC	2.7 MPa °C ⁻¹
Thermal dependency of the chemical kinetics, c ₇	2.58 × 10 ⁻⁷ °C ⁻¹ s ⁻¹
Depletion dependency of the chemical kinetics, c_{μ}	$2.12 \times 10^{-6} \text{ s}^{-1}$
Initial shear stress, τ_0	240 MPa
Nominal strain rate, $\dot{\gamma}_0$	10 ⁻⁶ s ⁻¹
Thermal pressurization coefficient, Λ	0.5 MPa °C ⁻¹
Thermal diffusivity, c _{th}	10 ⁻⁶ m ² s ⁻¹
Hydraulic diffusivity, c _{hy}	10 ⁻⁶ m ² s ⁻¹

Linear stability analysis

$$\lambda_{cr}^{ch} = 2\pi \sqrt{\frac{ac_{th}}{\gamma_0}} \frac{\rho C}{b\tau_0} \frac{c_{\mu}}{c_T}$$

 $\dot{\gamma}_0 = 10^{-6} \text{ s}$ $\lambda_{cr}^{ch} = 0.12 \text{ m}$

Only shear zones with a thickness $h < \lambda_{cr}/2$ will support stable homogeneous shear

Short lived slip instability (depletion of the reactant) Nucleation of transcient slip events, 'slow' earthquakes

Challenging questions

Major role of the width of the localized zone on the dissipative processes

Modeling of coupled thermo-chemo-hydro-mechanical phenomena with evolution of the microstructure of the material through various mechanical and chemical processes

The effect of evolving micro-structural length scale on the macroscopic constitutive behaviour of granular media