MTiG 4, Modern Trends in Geomechanics, Assisi, Italy, 16.-18. May 2016

Numerical and experimental study of debris flow

Wei Wu Institut für Geotechnik, Universität für Bodenkultur, Vienna, Austria

Landslides and debris flows

Content

- Constitutive model: solid and fluid
- SPH: numerical model for large deformation
- LBM-DEM: model for debris flow
- Outlook

Granular flow: from slow to fast

Stress decomposition (static part+dynamic part):

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}_h + \boldsymbol{\sigma}_d \qquad \dot{\boldsymbol{\sigma}} = \dot{\boldsymbol{\sigma}}_h + \dot{\boldsymbol{\sigma}}_d$$

• Static part:

$$\dot{\boldsymbol{\sigma}}_{\boldsymbol{h}} = \boldsymbol{L}(\boldsymbol{\sigma}, \dot{\boldsymbol{\epsilon}}) + f(\boldsymbol{e})\boldsymbol{N}(\boldsymbol{\sigma}) \|\dot{\boldsymbol{\epsilon}}\|$$

Dynamic part:

$$\dot{\sigma}_d = H(\sigma, \dot{\epsilon}, \ddot{\epsilon}, e)$$

Some remarks

Bagnold's findings:

Macro viscous regime:

$$T_v = k_1 \frac{\mathrm{d}U}{\mathrm{d}y},$$
$$k_1 = 2.25\lambda^{\frac{3}{2}}\mu,$$

• Grain inertia regime:

$$T_i = k_2 \left(\frac{\mathrm{d}U}{\mathrm{d}y}\right)^2,$$

$$k_2 = 0.042\rho_s (\lambda d)^2 \mathrm{sin}\alpha_i,$$

Bagnold number:

$$B = \frac{\lambda^{\frac{1}{2}} \rho_s d^2 (\mathrm{d}U/\mathrm{d}y)}{\mu},$$

Model performance (SS)

Numerical simulation of simple shear

Guo, XG, Peng, Ch, Wu, W, Wang, YQ, Hypoplastic constitutive model for debris material, *Granular Matter*, submitted, 2016

Modelling creep

$$\dot{\mathbf{T}} = \dot{\mathbf{T}}_{\mathbf{h}} + \dot{\mathbf{T}}_{\mathbf{d}} = \mathbf{0}$$

Xu, GF, Wu, W, Qi, JL, Modeling the viscous behavior of frozen soil with hypoplasticity, Int. J.Numer. Anal. Methods Geomech., in press, 2016

SPH Principle

Field equations: Soil-water mixture

Mathematical model – Mixture theory

- Soil and water occupy the whole domain simultaneously;
- Each constituent satisfies its own balance equations;
- Interactions are modelled by buoyance force and drag force.

$$\begin{aligned} \partial_t (\tilde{\rho}_s \phi_s) + \nabla \cdot (\tilde{\rho}_s \phi_s \boldsymbol{v}_s) &= 0 \\ \partial_t (\tilde{\rho}_s \phi_s \boldsymbol{v}_s) + \nabla \cdot (\tilde{\rho}_s \phi_s \boldsymbol{v}_s \boldsymbol{v}_s) \\ &= \nabla \cdot (\phi_s \boldsymbol{\sigma}_s) + \tilde{\rho}_s \phi_s \boldsymbol{g} - \phi_s \nabla p + \boldsymbol{f}_d \end{aligned}$$

$$\partial_t (\tilde{\rho}_f \phi_f) + \nabla \cdot (\tilde{\rho}_f \phi_f \boldsymbol{v}_f) = 0$$

$$\partial_t (\tilde{\rho}_f \phi_f \boldsymbol{v}_f) + \nabla \cdot (\tilde{\rho}_f \phi_f \boldsymbol{v}_f \boldsymbol{v}_f)$$

$$= -\phi_f \nabla p + \nabla \cdot (\phi_f \boldsymbol{\tau}_f) + \tilde{\rho}_f \phi_f \boldsymbol{g} - \boldsymbol{f}_d$$

Numerical example

Seepage failure of an embankment

Numerical example

Problem 2: Seepage failure of an embankment

Numerical examples

Seepage failure of an embankment

Peng, Ch, Wu, W, Yu, HS, Wang, CH, A SPH approach for large deformation analysis with hypoplastic constitutive model, *Acta Geotechnica*, **10**, 703-717, 2015

LBM-DEM-FEM

Images of the test conducted by Geobrugg AG

Why these methods?

Rheology of debris material

Bagnold Number

- *ρ_s* particle density
- d_s particle size
- λ_s particle concentration
- γ shear rate
- μ_f fluid dynamic viscosity

Fluid and solid

T. Bisantino, P. Fischer & F. Gentile, "Rheological characteristics of debris-flow material in South-Gargano watersheds", Natural Hazards, 54(2), 209-223, 2009

LBM-DEM coupling

Debris material: viscosity measurement

Conventional

Rotating drum (cylinder)

Flow pattern (clay balls in kaolinite suspension)

Amount of particles

LBM basics

A mesoscopic approach to fluid dynamics

Probability density function «Population»

A two-step solution procedure:

Streaming Step

Collision Step

Rotating drum test

Mixture (40% particles), rotating drum with variable angular speed

0.3 rad/s

0.7 rad/s

0.9 rad/s

Numerical simulation

Mixture (40% particles)

0.3 rad/s

0.9 rad/s

Leonardi, M. Cabrera, F. K. Wittel, R. Kaitna, M. Mendoza, W. Wu, H. J. Herrmann, Granular front formation ²⁵ in free-surface flow of concentrated suspensions, *Physics Review*, E**92**, 052204, 2015

LBM-DEM-FEM: flexible barrier

Centrifuge in Vienna

Model box

Centrifuge and Corioli force

7th Framework of European Commission

MUltiscale MOdeling of LAndslides and DEbris flows

MUMOLADE

Ch. Peng, A. Leonardi, M. Cabrera, F. Wittel, H.J. Herrmann